Home | | Physics 12th Std | Basic properties of charges

Electrostatics - Basic properties of charges | 12th Physics : Electrostatics

Chapter: 12th Physics : Electrostatics

Basic properties of charges

(i) Electric charge (ii) Conservation of charges (iii) Quantisation of charges

Basic properties of charges


(i) Electric charge

Most objects in the universe are made up of atoms, which in turn are made up of protons, neutrons and electrons. These particles have mass, an inherent property of particles. Similarly, the electric charge is another intrinsic and fundamental property of particles. The nature of charges is understood through various experiments performed in the 19th and 20th century. The SI unit of charge is coulomb.


(ii) Conservation of charges

Benjamin Franklin argued that when one object is rubbed with another object, charges get transferred from one to the other. Before rubbing, both objects are electrically neutral and rubbing simply transfers the charges from one object to the other. (For example, when a glass rod is rubbed against silk cloth, some negative charge are transferred from glass to silk. As a result, the glass rod is positively charged and silk cloth becomes negatively charged). From these observations, he concluded that charges are neither created or nor destroyed but can only be transferred from one object to other. This is called conservation of total charges and is one of the fundamental conservation laws in physics. It is stated more generally in the following way.

‘The total electric charge in the universe is constant and charge can neither be created nor be destroyed. In any physical process, the net change in charge will always be zero.


(iii) Quantisation of charges

What is the smallest amount of charge that can be found in nature? Experiments show that the charge on an electron is −e and the charge on the proton is +e. Here, e denotes the fundamental unit of charge. The charge q on any object is equal to an integral multiple of this fundamental unit of charge e.


q = ne                   (1.1)

Here  n  is  any  integer  (0,±1,±2,  Â±3, ±4………..). This is called quantisation of electric charge. Robert Millikan in his famous experiment found that the value of e = 1.6 × 10-19C. The charge of an electron is −1.6 × 10-19 C and the charge of the proton is +1.6 × 10-19C.

When a glass rod is rubbed with silk cloth, the number of charges transferred is usually very large, typically of the order of 1010. So the charge quantisation is not appreciable at the macroscopic level. Hence the charges are treated to be continuous (not discrete). But at the microscopic level, quantisation of charge plays a vital role.


Tags : Electrostatics , 12th Physics : Electrostatics
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
12th Physics : Electrostatics : Basic properties of charges | Electrostatics

Related Topics

12th Physics : Electrostatics


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.