Inductor is a device used to store energy in a magnetic field when an electric current flows through it.

**SELF-INDUCTION**

**Introduction**

Inductor is a device
used to store energy in a magnetic field when an electric current flows through
it. The typical examples are coils, solenoids and toroids shown in Figure 4.18.

Inductance is the property of inductors to generate emf due to the change in current flowing through that circuit (self-induction) or a change in current through a neighbouring circuit with which it is magnetically linked (mutual induction). We will study about self-induction and mutual induction in the next sections.

An electric current
flowing through a coil will set up a magnetic field around it. Therefore, the
magnetic flux of the magnetic field is linked with that coil itself. If this
flux is changed by changing the current, an emf is induced in that same coil
(Figure 4.19). This phenomenon is known as self-induction. The emf induced is
called self-induced emf.

Let Î¦* _{B}*
be the magnetic flux linked with each turn of the coil of N turns, then the
total flux linked with the coil

The constant of
proportionality *L* is called self-inductance of the coil. It is also
referred to as the coefficient of self-induction. If *i* =1*A* , then *L*
= *N*Î¦* _{B}*
.

When the current *i*
changes with time, an emf is induced in it. From Faradayâ€™s law of
electromagnetic induction, this self-induced emf is given by

The negative sign in the
above equation means that the self-induced emf always opposes the change in
current with respect to time. If di**/**dt* *=1* A s*^{âˆ’}^{1}* *, then* L *=âˆ’Îµ* *.

**Inductance of a coil is
also defined as the opposing emf induced in the coil when the rate of change of
current through the coil is 1 Aâ€†s^{âˆ’1}.**

Inductance is a scalar
and its unit is *Wb A*^{-}^{1}* *or* V s A*^{-}^{1}* *. It is also measured in* *henry (H).

*H *=* *1* W b A*^{âˆ’}* *^{1}* *=1* V s A*^{âˆ’}^{1}

The dimensional formula
of inductance is *M L*^{2} *T* ^{-} ^{2} *A*^{-}^{2} .

If *i* = 1 A and *N*
Î¦* _{B}* =1

Therefore, **the
inductance of the coil** **is said to be one henry if a current of 1â€† A
produces unit flux linkage in the coil.**

If di/dt = 1 As^{âˆ’ 1} and Îµ =âˆ’1 V , then L H =1 .

Therefore, **the
inductance of the coil is** **one henry if a current changing at the rate of
1 Aâ€†s^{âˆ’1} induces an opposing emf of 1â€†V in it.**

We have learnt about
inertia in XI standard. In translational motion, mass is a measure of inertia;
in the same way, for rotational motion, moment of inertia is a measure of
rotational inertia (Refer sections 3.2.1 and 5.4 of XI physics text book).
Generally, inertia means opposition to change its state.

The inductance plays the
same role in a circuit as mass and moment of inertia play in mechanical motion.
When a circuit is switched on, the increasing current induces an emf which
opposes the growth of current in a circuit (Figure 4.20(a)). Likewise, when
circuit is broken, the decreasing current induces an emf in the reverse
direction. This emf now opposes the decay of current (Figure 4.20(b)).

Thus, inductance of the
coil opposes any change in current and tries to maintain the original state.

Tags : Introduction, Definition, Formula, Physical significance | Electromagnetic Induction , 12th Physics : Electromagnetic Induction and Alternating Current

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail

12th Physics : Electromagnetic Induction and Alternating Current : Eddy Currents | Introduction, Definition, Formula, Physical significance | Electromagnetic Induction

**Related Topics **

Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright Â© 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.