Home | Waves: Important Questions

# Waves: Important Questions

1. What is meant by waves?.

2. Write down the types of waves.

3. What are transverse waves?. Give one example.

4. What are longitudinal waves?. Give one example.

5. Define wavelength.

6. Write down the relation between frequency, wavelength and velocity of a wave.

7. What is meant by interference of waves?.

8. Explain the beat phenomenon.

9. Define intensity of sound and loudness of sound.

10. Explain Doppler Effect.

11. Explain red shift and blue shift in Doppler Effect.

12. What is meant by end correction in resonance air column apparatus?

13. Sketch the function y = x + a. Explain your sketch.

14. Write down the factors affecting velocity of sound in gases.

15. What is meant by an echo?. Explain.

1. Discuss how ripples are formed in still water.

2. Briefly explain the difference between travelling waves and standing waves.

3. Show that the velocity of a travelling wave produced in a string is v = √[T/μ]

4. Describe Newton’s formula for velocity of sound waves in air and also discuss the Laplace’s correction.

5. Write short notes on reflection of sound waves from plane and curved surfaces.

6. Briefly explain the concept of superposition principle.

7. Explain how the interference of waves is formed.

8. Describe the formation of beats.

9. What are stationary waves?. Explain the formation of stationary waves and also write down the characteristics of stationary waves.

10. Discuss the law of transverse vibrations in stretched strings.

11. Explain the concepts of fundamental frequency, harmonics and overtones in detail.

12. What is a sonometer?. Give its construction and working. Explain how to determine the frequency of tuning fork using sonometer.

13. Write short notes on intensity and loudness.

14. Explain how overtones are produced in a

(a) Closed organ pipe

(b) Open organ pipe

15. How will you determine the velocity of sound using resonance air column apparatus?

16. What is meant by Doppler effect?.

Discuss the following cases

(1) Source in motion and Observer at rest

(a) Source moves towards observer

(b) Source moves away from the observer

(2) Observer in motion and Source at rest.

(a) Observer moves towards Source

(b) Observer resides away from the Source

(3) Both are in motion

(a) Source and Observer approach each other

(b) Source and Observer resides from each other

(c) Source chases Observer

(d) Observer chases Source

## 1. Why is it that transverse waves cannot be produced in a gas?. Can the transverse waves can be produced in solids and liquids?Answer: Transverse waves travel in the form of crests and troughs and so involve change in shape. As gas has no elasticity of shape, transverse waves cannot be produced in it.2. Why is the roar of our national animal different from the sound of a mosquito?Answer: Roaring of a national animal (tiger) produces a sound of low pitch and high intensity or loudness, whereas the buzzing of mosquito produces a sound of high pitch and low intensity or loudness.3. A sound source and listener are both stationary and a strong wind is blowing. Is there a Doppler effect?Answer: Yes. It does not matter whether there is sound I source or transmission media in motion.4. In an empty room why is it that a tone sounds louder than in the room having things like furniture etc.Answer: Sound is a form of energy. The furniture which act as obstacles absorbs most of the energy. So the intensity of sound become low but in empty room, due to the absence of obstacles the intensity of sound remain mostly same and we feel it louder.5. How do animals sense impending danger of hurricane? Answer: Some animals are believed to be sensitive to low frequency sound waves emitted by hurricanes. They can also detect the slight fall in air pressure, and water pressure that signal a storm's approach.6. Is it possible to realize whether a vessel kept under the tap is about to fill with water?Answer: The frequency of the note produced by an air column is inversely proportional to its length. As the level of water in the vessel rises, the length of the air column above it decreases. It produce, sound of decreasing frequency, i.e., the sound becomes shorter. From the shrillness of sound, is possible to realize whether the vessel is filled with water.vmin = 11.71 ms-1

Tags : Physics , 11th Physics : UNIT 11 : Waves
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
11th Physics : UNIT 11 : Waves : Waves: Important Questions | Physics