Home | | Maths 12th Std | Exercise 6.5: Point of intersection of two straight lines

Problem Questions with Answer, Solution - Exercise 6.5: Point of intersection of two straight lines | 12th Mathematics : UNIT 6 : Applications of Vector Algebra

Chapter: 12th Mathematics : UNIT 6 : Applications of Vector Algebra

Exercise 6.5: Point of intersection of two straight lines

Maths Book back answers and solution for Exercise questions - Find the parametric form of vector equation and Cartesian equations of a straight line

EXERCISE 6.5

1. Find the parametric form of vector equation and Cartesian equations of a straight line passing through (5, 2, 8) and is perpendicular to the straight lines  = (iˆ + ˆj - ˆk ) + s(2iˆ - 2 ˆj + ˆk ) and  = (2iˆ jˆ - 3kˆ ) + t+ 2 ˆ+ 2ˆ) .


2. Show that the lines  = (6iˆ + ˆj + k ) + s(iˆ + 2 ˆj - k ) and  = (3ˆ+ 2 ˆ- 2ˆ) + t(2ˆ+ 4 ˆ- 5ˆ) are skew lines and hence find the shortest distance between them.


3. If the two lines   intersect at a point, find the value of .


4. Show that the lines   y-2 =0 intersect. Also find the point of intersection.


5. Show that the straight lines x +1 = 2 y = -12z and x = y + 2 = 6z - 6 are skew and hence find the shortest distance between them.


6. Find the parametric form of vector equation of the straight line passing through (-1, 2,1) and parallel to the straight line  = (2iˆ + 3 ˆkˆ) + t(iˆ - 2 ˆkˆ) and hence find the shortest distance between the lines.


7. Find the foot of the perpendicular drawn from the point (5, 4, 2) to the line  Also, find the equation of the perpendicular.


 

Answers:

Tags : Problem Questions with Answer, Solution , 12th Mathematics : UNIT 6 : Applications of Vector Algebra
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
12th Mathematics : UNIT 6 : Applications of Vector Algebra : Exercise 6.5: Point of intersection of two straight lines | Problem Questions with Answer, Solution

Related Topics

12th Mathematics : UNIT 6 : Applications of Vector Algebra


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.