Refraction at a
spherical surface
Let us consider a portion of a spherical surface AB separating
two media having refracting indices ?1 and ?2 (Fig. ).
This is symmetrical about an axis passing through the centre C and cuts the
surface at P.
The point P is called the pole of the surface. Let R be the
radius of curvature of the surface.
Consider a point object O on the axis in the first medium.
Consider two rays OP and OD originating from O. The ray OP falls normally on AB and goes into the second medium,
undeviated. The ray OD falls at D very close to P. After refraction, it meets at the point I on the axis, where the
image is formed. CE is the normal
drawn to the point D. Let i and r be the angle of incidence and refraction respectively.
Let angle DOP = α, angle DCP =
β, Angle DIC = γ
Since D is close to P, the angles α, β and γ are all small. From
the Fig.
tan α = DP/PO
tan β = DP/PO
tan γ = DP/PI
α = DP/PO
β = DP/PO
γ = DP/PI
From the ∆ODC, i = α + β
??..(1)
From the ∆DCI, β = r + γ or r = β ? γ ???(2)
From Snell?s Law, ?2/ ?1 = sin i/ sin r
and for small angles of i and r, we can write, ?1 i = ?2r ...(3)
we get ?1 (α +
β) = ?2 (β − γ) or ?1
α + ?2 γ = (?2 - ?1 )β ????(4)
Substituting the values of α, β and γ in equation (4)
?1(DP/PO) + ?2 (DP/PI) = (?2 -
?1) . DP/PC
?1/PO + ?2/PI = ( ?2 - ?1 )
/PC
As the incident ray comes from left to right, we choose this
direction as the positive direction of the axis. Therefore u is negative,
whereas v and R are positive substitute PO = ?u PI = +v and PC = +R in equation
(5),
( ?1 / -u ) + (?2/v) = (?2- ?1)/R
(?2/v) - ( ?1 / u ) + = (?2- ?1)/R ???.(6)
Equation (6) represents the general equation for refraction at a
spherical surface.
If the first medium is air and the second medium is of
refractive index ?, then
(? / v) ? ( 1/u) = (? -1)/R
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.