The angular momentum of a rotating rigid body is, L = I ω
The torque acting on a rigid body is, τ = dL/dt

**Conservation of angular momentum**

The angular momentum of a
rotating rigid body is, L = I ω

The torque acting on a rigid
body is, τ = dL/dt

When no external torque acts on the system, τ =dL/ * _{dt}* = 0

(i.e) *L = I* ω = constant

Total angular momentum of the body = constant

*(i.e.)
when no external torque acts on the body, the net angular momentum of a
rotating rigid body remains constant. This is known as law of conservation of
angular momentum.*

*Illustration of conservation of angular
momentum*

From the law of conservation of angular momentum, *I* ω = constant

(ie) ω ∝ 1/*l* ∝ , the angular velocity of
rotation is inversely proportional to the moment of inertia of the system.

Following are the examples for law of
conservation of angular momentum.

1. A diver jumping from springboard sometimes exhibits somersaults
in air before reaching the water surface, because the diver curls his body to
decrease the moment of inertia and increase angular velocity. When he is about
to reach the water surface, he again outstretches his limbs. This again increases
moment of inertia and decreases the angular velocity. Hence, the diver enters
the water surface with a gentle speed.

2. A ballet dancer can increase her angular
velocity by folding her arms, as this decreases the moment of inertia.

3. Fig. a shows a person sitting on a turntable
holding a pair of heavy dumbbells one in each hand with arms outstretched. The
table is rotating with a certain angular velocity. The person suddenly pushes
the weight towards his chest as shown Fig. b, the speed of rotation is found to
increase considerably.

4.The angular velocity of a planet in its orbit
round the sun increases when it is nearer to the Sun, as the moment of inertia
of the planet about the Sun decreases.

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail

**Related Topics **

Copyright © 2018-2020 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.