Home | | Maths 12th Std | Summary

Complex Numbers - Summary | 12th Mathematics : UNIT 2 : Complex Numbers

Chapter: 12th Mathematics : UNIT 2 : Complex Numbers

Summary

Rectangular form of a complex number is x + iy (or x + yi) , where x and y are real numbers.

SUMMARY

 

In this chapter we studied

 

Rectangular form of a complex number is x + iy (or x + yi) , where x and y are real numbers.

 

Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are said to be equal if and only if

Re(z1 ) = Re(z2 )  and  Im(z1 ) = Im(z2 ) . That is  x1 = x2 and  y1 = y2 .

 

The conjugate of the complex number x + iy is defined as the complex number x - iy.

 

Properties of complex conjugates


 

If  z = x + iy, then  √[x2 + y2] is called modulus of z . It is denoted by |z| .

 

Properties of Modulus of a complex number


 

Formula for finding square root of a complex number


 

Let r and θ be polar coordinates of the point P(x, y) that corresponds to a  non-zero complex number z = x + iy . The polar form or trigonometric form of a complex number P is

z = r(cosθ + i sinθ ) .

 

Properties of polar form

Property 1:

If z = r (cosθ + i sinθ ), then z-1 = 1/r  (cosθ - i sinθ ) .

Property 2:

If z1  = r1 (cosθ1  + i sinθ1 ) and  z2  = r2 (cosθ2  + i sinθ2 ),

then   z1 z2  = r1r2 (cos(θ1  + θ2 ) + i sin(θ1  + θ2 )) .

Property 3:

If  z1  = r1 (cosθ1  + i sinθ1 ) and  z2  = r2 (cosθ2  + i sinθ2 ) ,

Then z1/z2 = r1/r2 [cos(θ1- θ2)  + i sin(θ1- θ2) ]

 

de Moivre’s Theorem

(a) Given any complex number cos θ + i sin θ and any integer n,

(cosθ + i sinθ )n = cos nθ + i sin nθ

(b) If x is rational, then  cos x θ + i sin x θ  in one of the values of (cos θ + i sin θ)x

 

The nth roots of complex number z = r (cosθ + i sinθ ) are



Tags : Complex Numbers , 12th Mathematics : UNIT 2 : Complex Numbers
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
12th Mathematics : UNIT 2 : Complex Numbers : Summary | Complex Numbers

Related Topics

12th Mathematics : UNIT 2 : Complex Numbers


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.