Home | | Maths 12th Std | Exercise 2.7: Polar and Euler form of a Complex Number

# Exercise 2.7: Polar and Euler form of a Complex Number

Maths Book back answers and solution for Exercise questions - Mathematics : Complex Numbers: Polar and Euler form of a Complex Number: Exercise Questions with Answer, Solution

EXERCISE 2.7

1. Write in polar form of the following complex numbers

(i) 2 + i2ã3

(ii) 3 - iã3

(iii) -2 - i2

(iv) i -1 / [cos (ü/3) + i sin (ü/3)].   2. Find the rectangular form of the complex numbers  3. If ( x1 + iy1 )( x2 + iy2 )( x3 + iy3 )... ...( xn + iyn ) = a + ib , show that

(i) (x12 + y12 )(x22 + y22 )(x32 + y32 )... ...(xn2 + y n2 ) = a2 + b2

(ii)  4. If 1+ z / 1- z = cos 2ö¡ + i sin 2ö¡ , show that z = i tanö¡ . 5. If cos öÝ + cos öý + cos ö° = sin öÝ + sin öý + sin ö° = 0, show that

(i) cos 3öÝ + cos 3öý + cos 3ö° = 3cos(öÝ + öý + ö° ) and

(ii) sin 3öÝ + sin 3öý + sin 3ö° = 3sin (öÝ + öý + ö° ) . 6. If z = x + iy and arg ( z-i  / z+2) = ü/4 , show that x2 + y2 + 3x - 3y + 2 = 0 .  