EXERCISE 2.7
1. Write in polar form of the following complex numbers
(i) 2 + i2√3
(ii) 3 - i√3
(iii) -2 - i2
(iv) i -1 / [cos (Ï€/3) + i sin (Ï€/3)].
2. Find the rectangular form of the complex numbers
3. If ( x1 + iy1 )( x2 + iy2 )( x3 + iy3 )... ...( xn + iyn ) = a + ib , show that
(i) (x12 + y12 )(x22 + y22 )(x32 + y32 )... ...(xn2 + y n2 ) = a2 + b2
(ii)
4. If 1+ z / 1- z = cos 2θ + i sin 2θ , show that z = i tanθ .
5. If cos α + cos β + cos γ = sin α + sin β + sin γ = 0, show that
(i) cos 3α + cos 3β + cos 3γ = 3cos(α + β + γ ) and
(ii) sin 3α + sin 3β + sin 3γ = 3sin (α + β + γ ) .
6. If z = x + iy and arg ( z-i / z+2) = π/4 , show that x2 + y2 + 3x - 3y + 2 = 0 .
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.