Predominantly Right-to-Left (Complex) Shunts
Lesions within this group (some also
called mixinglesions) often produce
both ventricular outflowobstruction and shunting. The obstruction favors shunt
flow toward the unobstructed side. When the obstruction is relatively mild, the
amount of shunting is affected by the ratio of SVR to PVR, but increasing
degrees of obstruction fix the direc-tion and magnitude of the shunt. Atresia
of any one of the cardiac valves represents the extreme form of obstruction.
Shunting occurs proximal to the atretic valve and is completely fixed; survival
depends on another distal shunt (usually a patent ductus arteriosus [PDA],
patent foramen ovale, ASD, or VSD), where blood flows in the opposite
direction. This group of defects may also be divided according to whether they
increase or decrease pulmonary blood flow.
This anomaly classically includes right
ventricu-lar outflow obstruction, right ventricular hyper-trophy, and a VSD
with an overriding aorta. Right ventricular obstruction in most patients is due
to infundibular stenosis, which is due to hypertrophy of the subpulmonic muscle
(crista ventricularis).
At least 20% to 25% of patients also
have pulmonic stenosis, and a small percentage of patients has some element of
supravalvular obstruction. The pulmonic valve is often bicuspid, or, less
commonly, atretic. Infundibular obstruction may be increased by sym-pathetic
tone and is therefore dynamic; this obstruc-tion is likely responsible for the
hypercyanotic spells observed in very young patients. The combinationof right ventricular outflow obstruction and a VSD
results in ejection of unoxygenated right ven-tricular blood, as well as
oxygenated left ventricu-lar blood into the aorta. The right-to-left
shuntingacross the VSD has both fixed and variable compo-nents. The fixed
component is determined by the severity of the right ventricular obstruction,
whereas the variable component depends on SVR and PVR.
Neonates with severe right ventricular
obstruc-tion may deteriorate quickly, as pulmonary blood flow decreases when a
PDA starts to close. Intravenous prostaglandin E1
(0.05–0.2 mcg/kg/ min) is used to prevent ductal closure in such instances.
Surgical palliation with a left-to-right sys-temic shunt or complete correction
is then usually undertaken. For the former, a modified Blalock– Taussig
(systemic–pulmonary artery) shunt is most often used to increase pulmonary
blood flow. In this procedure, a synthetic graft is anastomosed between a
subclavian artery and an ipsilateral pulmonary artery. Complete correction
involves closure of the VSD, removal of obstructing infundibular muscle, and
pulmonic valvulotomy or valvuloplasty, when necessary.
The goals of anesthetic management in
patients with tetralogy of Fallot should be to maintainintravascular volume and
SVR. Increases in PVR, such as might occur from acidosis or excessive air-way
pressures, should be avoided. Ketamine (intra-muscular or intravenous) is a
commonly used induction agent because it maintains or increases SVR and
therefore does not aggravate the right-to-left shunting. Patients with milder
degrees of shunting generally tolerate inhalation induction. The right-to-left
shunting tends to slow the uptake of inhalation anesthetics; in contrast, it
may accel-erate the onset of intravenous agents. Oxygenation often improves
following induction of anesthesia. Muscle relaxants that release histamine
should be avoided. Hypercyanotic spells may be treated with intravenous fluid
and phenylephrine (5 mcg/kg). Beta blockers (eg, propranolol) may also be
effective in relieving infundibular spasm. Sodium bicarbon-ate to correct the
resulting metabolic acidosis, may also be helpful when the hypoxemia is severe
and prolonged.
With tricuspid atresia, blood can flow
out of the right atrium only via a patent foramen ovale (or an ASD). Moreover,
a PDA (or VSD) is necessary for blood to flow from the left ventricle into the
pulmonary circulation. Cyanosis is usually evident at birth, and its severity
depends on the amount of pulmonary blood flow that is achieved. Early survival
is depen-dent on prostaglandin E1 infusion, with or without a
percutaneous Rashkind balloon atrial septostomy. Severe cyanosis requires a
modified Blalock–Taussig shunt early in life. The preferred surgical
manage-ment is a modified Fontan procedure, in which the venous drainage is
directed to the pulmonary circu-lation. In some centers, a superior vena cava
to the main pulmonary artery (bidirectional Glenn) shunt may be employed before
or instead of a Fontan procedure. With both procedures, blood from the systemic
veins flows to the left atrium without the assistance of the right ventricle.
Success of the pro-cedure depends on a high systemic venous pressure and
maintaining both low PVR and a low left atrial pressure. Heart transplantation
may be necessary for a failed Fontan procedure.
In patients with transposition of the
great arteries, pulmonary and systemic venous return flows nor-mally back to
the right and left atrium, respectively, but the aorta arises from the right
ventricle, and the pulmonary artery arises from the left ventricle. Thus,
deoxygenated blood returns back into the systemic circulation, and oxygenated
blood returns back to the lungs. Survival is possible only through mixing of
oxygenated and deoxygenated blood across the foramen ovale and a PDA. The
presence of a VSD increases mixing and reduces the level of hypoxemia.
Prostaglandin E1 infusion is usually necessary. Rashkind
septostomy may be necessary if surgical correction is delayed. Corrective
surgical treatment involves an arterial switch procedure in which the aorta is
divided and reanastomosed to the left ventricle, and the pulmonary artery is
divided and reanastomosed to the right ventricle. The coro-nary arteries must
also be reimplanted into the old pulmonary artery root. A VSD, if present, is
closed. Less commonly, an atrial switch (Senning) proce-dure may be carried out
if an arterial switch is not possible. In this latter procedure, an intraatrial
baffle is created from the atrial wall, and blood from the pulmonary veins
flows across an ASD to the right ventricle, from which it is ejected into the
systemic circulation.
Transposition of the great vessels may
occur with a VSD and pulmonic stenosis. This combina-tion of defects mimics
tetralogy of Fallot; however, the obstruction affects the left ventricle, not
the right ventricle. Corrective surgery involves patch closure of the VSD,
directing left ventricular outflow into the aorta, ligation of the proximal
pulmonary artery, and connecting the right ventricular outflow to the pulmonary
artery with a valved conduit (Rastelli procedure).
With a truncus arteriosus defect, a
single arte-rial trunk supplies the pulmonary and systemic circulation. The
truncus always overrides a VSD, allowing both ventricles to eject into it. As
PVR gradually decreases after birth, pulmonary blood flow increases greatly,
resulting in heart failure. If left untreated, PVR increases, and cyanosis
develops again, along with Eisenmenger physiology. Surgical correction closes
the VSD, separates the pulmonary artery from the truncus, and connects the
right ventricle to the pulmonary artery with a conduit (Rastelli repair).
Th is syndrome describes a group of
defects charac-terized by aortic valve atresia and marked under-development of
the left ventricle. The right ventricle is the main pumping chamber for both
systemic and pulmonary circulations. It ejects normally into the pulmonary
artery, and all (or nearly all) blood flow entering the aorta is usually
derived from a PDA. Surgical treatment includes both the Norwood repair and a
hybrid approach to pallia-tion. In the Norwood repair, a new aorta is created
from the hypoplastic aorta and the main pulmo-nary artery. Pulmonary blood flow
is delivered via a Blalock–Taussig shunt. The right ventricle becomes the
heart’s systemic pumping ventricle. A hybrid approach has also been advocated
for the treatment of hypoplastic left heart syndrome. In this approach, the
pulmonary arteries are banded to reduce pul-monary blood flow, and the PDA is
stented to pro-vide for systemic blood flow.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.