Home | | Botany 11th std | Gymnosperms

Characteristic features, Classification, Economic importance, structure, Reproduction - Gymnosperms | 11th Botany : Chapter 2 : Plant Kingdom

Chapter: 11th Botany : Chapter 2 : Plant Kingdom


Gymnosperms (Gr. Gymnos = naked; sperma= seed) are naked seed producing plants.



Naked Seed producing Plants


Michael Crichton’s Science fiction in a book transformed into a Film of Steven Spielberg (1993) called Jurassic Park. In this film you might have noticed insects embedded in a transparent substance called amber which preserves the extinct forms. What is amber? Which group of plants produces Amber?­

Amber is a plant secretion that is a efficient preservative that doesn’t get degraded and hence can preserve remains of extinct life forms. The amber is produced by Pinites succinifera, a Gymnosperm.


In this chapter we shall discuss in detail about one group of seed producing plants called Gymnosperms.


Gymnosperms (Gr. Gymnos = naked; sperma= seed) are naked seed producing plants. They were dominant in the Jurassic and cretaceous periods of Mesozoic era. The members are distributed throughout the temperate and tropical region of the world


1. General characteristic features


            Most of the gymnosperms are evergreen woody trees or shrubs. Some are lianas (Gnetum)


            The plant body is sporophyte and is differentiated into root, stem and leaves.


            A well developed tap root system is present. Coralloid Roots of Cycas have symbiotic association with blue green algae. In Pinus the roots have mycorrhizae.

            The stem is aerial, erect and branched or unbranched (Cycas) with leaf scars.


            In conifers two types of branches namely branches of limited growth (Dwarf shoot) and Branches of unlimited growth (Long shoot) is present.


            Leaves are dimorphic, foliage and scale leaves are present. Foliage leaves are green, photosynthetic and borne on branches of limited growth. They show xerophytic features.


            The xylem consists of tracheids but in Gnetum and Ephedra Vessels are present­.


            Secondary growth is present. The wood may be Manoxylic (Porous, soft, more parenchyma with wide medullary ray -Cycas) or Pycnoxylic (compact with narrow medullary ray-Pinus).


            They are heterosporous. The plant may be monoecious (Pinus) or dioecious (Cycas).


            Microsporangia and Megasporangia are produced on Microsporophyll and Megasporophyll respectively.


            Male and female cones are produced.


            Anemophilous pollination is present.


            Fertilization is siphonogamous and pollen tube helps in the transfer of male nuclei.


            Polyembryony  (presence  of  many embryo)­ is Present. The naked ovule develops into seed. The endosperm is haploid and develop before fertilization.


            The life cycle shows alternation of generation. The sporophytic phase is dominant and gametophytic phase is highly reduced. The photograph of some of the Gymnosperms is given in Figure 2.38


2. Classification of Gymnosperms


Sporne (1965) classified gymnosperms into 3 classes, 9 orders and 31 families. The classes include i) Cycadospsida ii) Coniferopsida iii) Gnetopsida.


General Characters of Main classes:


Class I – Cycadopsida


            Plants are palm-like or fern-like.


            Compound, frond-like pinnate leaves.


            Manoxylic wood.


            Sperms are motile.


            Flower like structures are absent. Strobili are simple.


Example: Cycas, Zamia.


Class II – Coniferopsida


            Tall trees with simple leaves of varied shape.


            Wood is pycnoxylic.


            Cone like strobili are present.

            Motile sperms are absent (except Ginkgo biloba). Example: Pinus. 

Class III – Gnetopsida


            Shrubs, trees and lianas.


            Leaves are elliptical or strap-shaped, simple, opposite or whorled.


            Motile sperms are absent.


            Wood contains vessels.


            Strobili is called as inflorescence.


            Flower like structure with perianth is present. Example: Gnetum, Ephedra.


2. Comparison of Gymnosperm with Angiosperms


Gymnosperms resemble with angiosperms in the following features


            Presence of well organised plant body which is differentiated into roots, stem and leaves.


            Presence of cambium in gymnosperms as in dicotyledons.


            Flowers in Gnetum resemble to the angiosperm male flower. The Zygote represent the first cell of sporophyte.


            Presence of integument around the ovule.


            Both plant groups produce seeds.


            Pollen tube helps in the transfer of male nucleus in both.


            Presence of Eustele.


The difference between Gymnosperms and Angiosperms were given in Table 2.5


3. Economic importance of Gymnosperms


4. Cycas




Order – Cycadales


Family- Cycadaceae


Genus - Cycas



It is widely distributed in tropical and sub tropical region of eastern hemisphere of the world. Cycas revoluta, Cycas beddomei, Cycas circinalis, Cycas rumphii are some of the common species. The plant body is sporophyte and resemble a small palm. The growth is very slow. It is evergreen and xerophytic in nature.




The sporophyte is differentiated into root, stem and leaves. The stem is columnar bearing a crown of spirally arranged pinnately compound leaves (Figure 2.39).


External features




Two types of roots are found in Cycas. They are the tap root and coralloid root.


The primary root persists and forms the tap root. Some of the lateral roots give rise to branches which grow vertically upward below the ground level. They branch repeatedly to form dichotomously branched coral- like roots called coralloid roots. The cortical region of the coralloid root contains the Blue green alga – Anabaena sp. which helps in nitrogen fixation (Figure 2.40).




The stem is columnar, unbranched and woody. It is covered with persistent woody leaf bases. The stem also bears adventitious buds at the base.




Cycas has two types of leaves


(i)       Foliage or assimilatory leaves


(ii)   Scale leaves


(i) Foliage or assimilatory leaves


Foliage leaves are large, pinnately compound and form a crown at the top of the stem. Each leaf has 80-100 pairs of sessile leaflets. The apex is acute or spiny. The leaflet has a single midvein. Lateral veins are absent. Circinate vernation is present and young leaves are covered with ramenta.

 (ii) Scale leaves


Scale leaves are brown, small, triangular and persistent which are protective in function. They are covered with ramenta.

Internal structure


T.S. of Root


The internal organization of the primary root reveals the following parts.


1. Epiblema, 2. Cortex 3. Vascular region (Figure 2.41). Epiblema is the outermost layer and is made up of single layered parenchyma. It is followed by thin walled parenchymatous cortex. The cortex is delimited by single layered endodermis. A multilayered parenchymatous pericycle is present and it surrounds the vascular tissue. The xylem is diarch in young root and tetrarch in older ones. Secondary growth is present. Coralloid root also shows similar structure but the middle cortex is characterized by the presence of Algal zone. Blue green alga called, Anabaena is found in this zone. The xylem is triarch and exarch.


T.S. of Stem


The cross section of young stem is irregular in outline due to the presence of persistent leaf bases. It is differentiated into epidermis, cortex and vascular cylinder. It resembles the structure of a dicot stem (Figure 2.42).


The epidermis is the outermost layer and is covered with thick cuticle. It is discontinuous due to the presence of leaf bases. The cortex constitutes the major part and is made up of thin walled parenchymatous cells. The cells are filled with starch grains. Cortex also possesses several mucilage ducts and tannin cells. In young stem the vascular bundles are arranged in the form of a ring. A broad medullary ray is present. The vascular bundles are conjoint, collateral, endarch and open. Xylem is made up of tracheids and phloem consists of sieve tubes and phloem parenchyma. Companion cells are absent. The cambium present in the vascular bundle is active for short period. The secondary cambium is formed from the pericycle or cortex and helps in secondary growth of the stem. The cortical region shows a large number of leaf traces. The presence of direct leaf traces and girdling leaf trace is the unique feature of Cycas stem. Secondary growth results in polyxylic condition. Phellogen and cork are formed and replace the epidermis.The wood formed belongs to manoxylic type.

T.S. of Rachis


The outermost layer is epidermis and is covered by thick cuticle. The hypodermis is made up of two layers of sclerenchyma on the adaxial side and many layered on the abaxial side. The ground tissue is parenchymatous. The peculiar feature of the rachis is the arrangement of vascular bundle i.e., in an inverted Omega shape pattern (Figure 2.43). Each vascular bundle is covered by a single layered sclerenchymatous bundle sheath. Vascular bundles are collateral, endarch and open. A single layered endodermis and few layered pericycle surrounds the bundle. A diploxylic condition is present in the vascular bundles.( presence of both centripetal and centrifugal xylem).


T.S. of Leaflet

The leaflet of Cycas in transverse section shows the presence of upper and lower epidermis. The epidermal cells are thick walled and are covered with thick cuticle. The lower epidermis is not continuous and is interrupted by sunken stomata. The hypodermis consists of sclerenchyma cells to prevent transpiration. The mesophyll is differentiated into palisade and spongy parenchyma. 

The cells of this layer are involved in photosynthesis. The spongy parenchyma present in close proximity to the lower epidermis bear large intercellular spaces which help in gaseous exchange.

Layers of colourless, elongated cells which run parallel to the leaf surface from the midrib to the margin of the leaflet are seen. These constitute the Transfusion tissue that helps in the lateral conduction of water. The vascular bundle has xylem facing upper epidermis and phloem facing lower epidermis. The protoxylem occupies the centre, hence the bundle is mesarch. The vascular bundle has a sclerenchymatous bundle sheath (Figure 2.44).




Cycas reproduces by both vegetative and sexual methods

 Vegetative reproduction


It takes place by adventitious buds or bulbils. They develop in the basal part of the stem. The bulbils on germination produce new plants.


Sexual reproduction


Cycas is dioecious i.e., male and female cones are produced in separate plants. It is heterosporous and produces two types of spores (Figure 2.45).


Male cone


The male cone or staminate cone are borne singly on the terminal part of the stem. The growth of the stem is continued by the formation of axillary buds at the base of the cone. The male cone is displaced to one side showing sympodial growth in the stem. Male cones are stalked, compact, oval or conical and woody in structure. It consists of several microphylls which are arranged spirally around a central cone axis. 


Microsporophylls are flat, leaf-like and woody structures with narrow base and expanded upper portion. The upper expanded portion becomes pointed and is called apophysis. The narrow base is attached to the cone axis. Each microsporophyll contains thousands of microsporangia in groups called sori on abaxial (lower) surface. Development of sporangium is of Eusporangiate type. The spore mother cell undergoes meiosis to produce halpoid microspores. Each Microsporangium bears large number of microspores or pollen grains. Each sporangium is provided with a radial line of dehiscence, which helps in the dispersal of spores. Each microspore (Pollen grain) is a rounded, unicellular and uninucleate structure surrounded by outer thick exine and an inner thin intine. The microspore represents the male gametophyte.




The megasporophylls of Cycas are not organised into cones. They occur in close spirals around the tip of the stem of female plant. The megasporophylls are flat and measuring 15 -30 cm in length. Each megasporophyll is differentiated into a basal stalk and an upper leaf like portion. The ovules are attached to the lateral side of the sporophyll. The ovules contain megaspore and it represent the female gametophyte.


Structure of Ovule

 Cycas produces the largest ovule of the plant kingdom. The ovules are orthotropous, unitegmic and possess a short stalk. The single integument is very thick and covers the ovule leaving a small opening called micropyle. The integument consists of 3 layers, the outer and inner are fleshy (sarcotesta), the middle layer is stony called sclerotesta. The inner layer remains fused with the nucellus. The nucellus grows out into a beak-like structure and the upper part dissolves and forms a cavity-like structure called pollen chamber. A single megaspore mother cell undergoes meiosis to form four haploid megaspores. The lowermost becomes functional and others get degenerated. The nucellus gets reduced in the form of a thin papery layer in mature seeds and encloses the female gametophyte An enlarged megaspore or the ­embryo-sac is present within the nucellus. An archegonial chamber with 3-6 archegonia are present in the archegonial chamber below the pollen chamber (Figure 2.46).

Pollination and Fertilization.


Pollination is carried out by wind and occurs at 3 celled stage(a prothallial cell, a large tube cell and a small generative cell). Pollen grains gets lodged in the pollen chamber after pollination. The generative cell divides into a stalk and a body cell. The body cell divides to produce two large multiciliated antherozoids or sperms. During fertilization, one of the male gamete or multiciliated antherozoid fuses with the egg of the archegonium to form a diploid zygote (2n). The endosperm is haploid. The interval between pollination and fertilization is 4- 6 months. The zygote undergoes mitotic division and develops into embryo. The ovule is transformed into seed. The seed has two unequal cotyledons. Germination is hypogeal. The life cycle shows alternation of generations (Figure 2.47).


5. Pinus

Class – Coniferopsida


Order – Coniferales


Family –Pinaceae


Genus - Pinus


Pinus is a tall tree, looks conical in appearance and forms dense evergreen forest in the North temperate and sub-alpine regions of the world. They mostly grow in high altitudes (ranging from 1,200 to 3,000 metres). Some species of this genus include, Pinus roxburghii, P. wallichiana, P. gerardiana and P. insularis.


External features


The plant body is sporophyte and is differentiated into root, stem and leaves.

The main stem is branched. The branches are dimorphic with long and short branches (Figure 2.48).




Tap root system is found in Pinus. The root hairs are not well developed and the roots are covered with fungal hyphae called mycorrhizae.




The stem is cylindrical, erect, woody and branched. The branches are monopodial. The branches are of two types.


(i) Long shoots or branches of unlimited growth, (ii) Dwarf shoot or branches of limited growth


(i)       Long shoots or branches of unlimited growth


The long shoot is present on the main trunk the apical buds grow indefinitely, They shorten gradually towards the tip, thus providing a pyramidal appearance to the tree. These branches bear scale leaves only.

(ii) Dwarf shoot or branches of limited growth


These branches do not have apical buds and hence show only limited growth. They develop in the axils of scale leaves and bear both scale and foliage leaves.




There are two types of leaves 1. scale leaves, 2. foliage leaves


1. Scale leaves:


They are dark, brown, membranous, thin and small. They are present on both long and dwarf shoots. Their function is to protect young buds. The scale leaves on the dwarf shoots have a distinct midrib and are called “Cataphylls”.


2. Foliage leaves:


The foliage leaves are green angular and needle like structures. They are borne on the dwarf shoot. A dwarf shoot with a group of needle like foliage leaves is known as foliar spur. The number of needles per dwarf shoot varies among the species. It may be one (Pinus monophylla), two (P. sylvestris), three (P. geraradiana), four (P. quadrifolia) and five (P. excelsa).


Internal Structure


T.S. of root


The internal structure of root reveals the presence of epiblema, cortex and stele.

The epiblema is made up of single layer of parenchymatous cells. Cortex is the wide zone and consists of parenchyma. Some of the cells have resin ducts. A single layered endodermis with suberised wall is present and is impregnated with tannins.A multilayered pericycle made up of parenchyma is present. Vascular tissue is radial, diarch with exarch xylem. The protoxylem bifurcates to form a ‘Y’ shaped structure and a resin duct lies in between the two arms of protoxylem. Secondary growth is present (Figure 2.49).

T.S. of Stem

The internal organization of the stem shows three regions namely epidermis, Cortex and vascular tissue (Figure 2.50).

Epidermis is the outermost layer composed of compactly arranged and heavily cutinized cells. Epidermis is followed by few layers of sclerenchymatous hypodermis. The cortex consists of thin walled parenchyma cells. Resin canals and tannin filled cells are present in this region. Endodermis is indistinguishable from cortical cells. Vascular region is surrounded by pericycle. A ring consists of five or six vascular bundles are present. Vascular bundles are conjoint, collateral, open and endarch. Pith and medullary rays are present. Secondary growth is present and annual rings are formed.


T.S. of needle or foliage leaf


The internal structure of needle shows xerophytic adaptations. In cross section the outline appears more or less triangular and is divided into epidermis, mesophyll and vascular bundles. The epidermis is single layered and possesses thick cuticle and sunken stomata.Epidermis is followed by a few layers of sclerenchymatous hypodermis. It is interrupted by sub-stomatal cavities (Figure 2.51).

Mesophyll is not differentiated into palisade and spongy parenchyma. Thin walled cells with chloroplasts are present. The cells are peculiar with numerous small infoldings which project into the cavities. The infoldings increase the photosynthetic area of the needle leaves Resin canal is present in the mesophyll. A single layered endodermis separates the vascular region from the cortex. A multilayered pericycle containing starch is present. Two types of specialised cells called albuminous cells and tracheidal cells are present. The former helps to pass substances from the mesophyll to the phloem while the latter helps in water conduction and constitutes transfusion tissue. Two vascular bundles are present. They are separated by sclerenchyma tissue. The Vascular bundles are conjoint, collateral and open.



Pinus is heterosporous and produces two types of spores called. microspores and megaspores. The plants are monoecious. Both male and female cones or strobili develop on the different branches of the same plant (Figure 2.52).


Male cone

 Male cones are produced in clusters on branches of unlimited growth. Each cone develops on the axil of scale leaf . The male cone consists of a centrally located cone axis surrounded by numerous spirally arranged microsporophyll. It bears two microsporangia at the base of the abaxial side of the microsporophyll. Each sporangium bears numerous winged microspores (n) or pollen grains. The microspores represent the male gametophyte

Female cone:-


Female cones are formed in the groups of 1 to 4 in the axils of the scale leaves. The female cone takes about three years to mature. It has the central axis around which megasporophylls are arranged spirally. The megasporophyll is the compound structure consisting of two types of scales. 1. Bract scale (sterile), and 2. Ovuliferous scales (fertile). The dorsal surface of each ovuliferous scale bears two ovules. Ovules bear megaspores which represent the female gametophyte.


Pollination and fertilization


In Pinus wind pollination takes place (Anemophilous). The microspore or pollen grain is released in the 4 celled stage(two prothallial cell, 1 generative and 1 tube cell). At the time of pollination a secretion oozes out from the micropyle of the ovule which entangles pollen grains which helps to lodge them in the pollen chamber. The tube cell protrudes to form pollen tube. The generative cell divides to produce stalk cell and body cell. The body cell divides into unequal male cells. Fertilization takes place after about a year of pollination. The pollen tube containing two male nuclei penetrates through the micropyle and reaches the egg. One of the male nuclei fuses with the egg forming diploid zygote and the remaning one gets degenerated. 

The fertilized egg (zygote) undergoes mitotic division and develops into an embryo. Polyembryony is present. The embryo undergoes several changes and finally becomes a winged seed. The seed germination is epigeal. Life cycle of Pinus shows alternation of generation (Figure 2.53).

Know about Fossil plants

T he National wood fossil park is situated in Tiruvakkarai, a Village of Villupuram district of Tamil Nadu. The park contains petrified wood fossils approximately 20 million years old. The term ‘form genera’ is used to name the fossil plants because the whole plant is not recovered as fossils instead organs or parts of the extinct plants are obtained in fragments. Shiwalik fossil park-Himachal Pradesh, Mandla Fossil park-Madhya Pradesh, Rajmahal Hills–Jharkhand, Ariyalur – Tamilnadu are some of the fossil rich sites of India.


Some of the fossil representatives of different plant groups are given below


Fossil algae - Palaeoporella, Dimorphosiphon

Fossil Bryophytes – Naiadita, Hepaticites, Muscites

Fossil Pteridophytes – Cooksonia, Rhynia,, Baragwanthia, Calamites

Fossil Gymnosperms – Medullosa, Lepido-carpon, Williamsonia, Lepidodendron

Fossil Angiosperms – Archaeanthus, Furcula

Tags : Characteristic features, Classification, Economic importance, structure, Reproduction , 11th Botany : Chapter 2 : Plant Kingdom
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
11th Botany : Chapter 2 : Plant Kingdom : Gymnosperms | Characteristic features, Classification, Economic importance, structure, Reproduction

Related Topics

11th Botany : Chapter 2 : Plant Kingdom

Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.