Practical Geometry
Practical
geometry is the method of applying the rules of geometry dealt with the properties
of points, lines and other figures to construct geometrical figures. “Construction”
in Geometry means to draw shapes, angles or lines accurately. The geometric constructions
have been discussed in detail in Euclid’s book ‘Elements’. Hence these constructions
are also known as Euclidean constructions. These constructions use only compass
and straightedge (i.e. ruler). The compass establishes equidistance and the straightedge
establishes collinearity. All geometric constructions are based on those two concepts.
It is possible
to construct rational and irrational numbers using straightedge and a compass as
seen in chapter II. In 1913 the Indian mathematical Genius, Ramanujam gave a geometrical
construction for 355/113 =π. Today with all our accumulated skill in exact measurements.
it is a noteworthy feature that lines driven through a mountain meet and make a
tunnel.In the earlier classes, we have learnt the construction of angles and triangles
with the given measurements.
In this chapter
we are going to learn to construct Centroid, Orthocentre, Circumcentre and Incentre
of a triangle by using concurrent lines.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.