Planning in State Space Search
Problem solving in AI may be characterized as a systematic search
through a range of possible actions in order to reach some predefined goal or
solution. The problem solving agents decide what to do by finding sequence of
action that lead to desirable states. The simplest agents which have been
described below are the reflex and goal based agents. The reflex agents use
direct mapping from states to actions and are unsuitable for very large
mappings. Problem solving agents find action sequence that lead to desirable
state.
A state space is represented by four components like steps involved in a
problem solving process, the start state of the problem and the corresponding
goal state. Search algorithms should track the paths from the start node to the
goal node because these paths contain a series of operations that lead to the
solution of the problem. A programmer should analyze and predict the behaviour
of search algorithms to successfully designed and implement them in a proper
manner. The problems can be characterized as spaces consisting of a set of
states and a set of operators that map from one state to another state. The
states may be distinguished as containing one of the following: one or more
initial or starting states, a number of intermediate states and one or more
goal states. A sequence of operators that map an initial state to a goal state
will provide the solution to a problem. A best solution is one that requires
the fewest no. of operations while mapping from an initial state to the goal
state. The amount of time and memory space required to complete the mapping
measures the performance of a particular solution method. The state space
search can be in forward and backward direction. The forward state space
planning is also known as progression planning in which searching always takes
place in forward direction. In backward search, it finds only the relevant
actions. An agent with several immediate options of unknown values can decide
what to do by first examining the different possible sequences of actions that
lead to states of known values and then choosing the best one.
A state space search can be searched in two directions like from the
inputs towards the goal or from the goals towards the inputs. In data driven
search, one starts with the given facts of a problem and uses a set of legal
moves or rules to change the states. This process is continued until it
generates a path that satisfies the goal condition. In goal driven search,
first determine the rules or legal moves that can be used to generate the goal
and identifies the condition that can be applied to use these rules. These
conditions form the new goals or sub goals for the search. One must continue
the search process by working backwards through successive sub goals until it
returns of moves or rules leading from the data to a goal, even if it performs
this process backwards. Data driven search is suggested if one is provided with
almost all the data at the time of formulation of the problem statement.
Data driven search uses the knowledge and constraints present in the
given data of a problem to guide the search along a path. The main work in the
area of search strategies is to find the correct search performance measures
like time complexity, space complexity, completeness and optimality help to
judge the fitness of a particular search algorithm.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.