Balancing chemical
equation in its molecular form
A chemical equation is called balanced equation
only when the numbers and kinds of molecules present on both sides are equal.
The several steps involved in balancing chemical equation are discussed below.
Example 1
Hydrogen
combines with bromine giving HBr
H2 + Br2 -> HBr
This is the skeletal equation. The number of atoms of hydrogen on the
left side is two but on the right side it is one. So the number of molecules of
HBr is to be multiplied by two. Then the equation becomes
H2 + Br2 -> 2HBr
This is the balanced (or) stoichiometric equation.
Example 2
Potassium permanganate reacts with HCl to give KCl and other products.
The skeletal equation is
KMnO4 + HCl -> KCl + MnCl2 + H2O
+ Cl2
If an element is present only one substance in the left hand side of the
equation and if the same element is present only one of the substances in the
right side, it may be taken up first while balancing the equation.
According to the above rule, the balancing of the equation may be
started with respect to K, Mn, O (or) H but not with Cl.
There are
L.H.S., R.H.S
K = 1, 1
Mn = 1, 1
O = 4, 1
So the equation becomes
KMnO4 + HCl -> KCl + MnCl2 + 4H2O + Cl2
Now there are eight hydrogen atoms on the right side of the equation, we
must write 8 HCl.
KMnO4 + 8HCl -> KCl + MnCl2
+ 4H2O + Cl2
Of the eight chlorine atoms on the left, one is disposed of in KCl and
two in MnCl2 leaving five free chlorine atoms. Therefore, the above equation
becomes
KMnO4+8HCl -> KCl+MnCl2+4H2O+5/2
Cl2
Equations
are written with
whole number coefficient
and so the equation is multiplied
through out by 2 to become
2KMnO4+16 HCl -> 2KCl+2
MnCl2+8H2O+5Cl2
Redox reactions
[Reduction - oxidation]
In our daily life we come across process like
fading of the colour of the clothes, burning of the combustible substances such
as cooking gas, wood, coal, rusting of iron articles, etc. All such processes
fall in the category of specific type of chemical reactions called reduction -
oxidation (or) redox reactions. A large number of industrial processes like,
electroplating, extraction of metals like aluminium and sodium, manufactures of
caustic soda, etc., are also based upon the redox reactions. Redox reactions
also form the basis of electrochemical and electrolytic cells. According to the
classical concept, oxidation and reduction may be defined as,
Oxidation
is a process of addition of oxygen (or) removal of hydrogen
Reduction
is a process of removal of oxygen (or) addition of hydrogen.
Example
Reaction
of Cl2 and H2S
H2S +
Cl2
- > 2HCl
+ S
Oxidation
: H2S
-> S
Reduction
: Cl2 -> 2HCl
In the above reaction, hydrogen is being removed from hydrogen sulphide
(H2S) and is being added to chlorine (Cl2). Thus, H2S
is oxidised and Cl2 is reduced.
Electronic concept of
oxidation and Reduction
According to electronic concept, oxidation is a
process in which an atom taking part in chemical reaction loses one or more
electrons. The loss of electrons results in the increase of positive charge
(or) decrease of negative of the species. For example.
Fe2+ -> Fe3+
+ e- [Increase of positive charge]
Cu -> Cu2+ + 2e-
[Increse of positive charge]
The species which undergo the loss of electrons during the reactions are
called reducing agents or reductants. Fe2+ and Cu are reducing
agents in the above example.
Reduction
Reduction is a process in which an atom (or) a group of atoms taking
part in chemical reaction gains one (or) more electrons. The gain of electrons
result in the decrease of positive charge (or) increase of negative charge of
the species. For example,
Fe3+ + e- -> Fe2+
[Decrease of positive charges]
Zn2+ + 2e- -> Zn [Decrease of positive charges]
The species which undergo gain of electrons during the reactions are
called oxidising agents (or) oxidants. In the above reaction, Fe3+
and Zn2+ are oxidising agents.
Oxidation Number (or) Oxidation State
Oxidation number of the element is defined as the residual charge which
its atom has (or) appears to have when all other atoms from the molecule are
removed as ions.
Atoms can have positive, zero or negative values of oxidation numbers
depending upon their state of combination.
General Rules for assigning Oxidation Number to
an atom
The following rules are employed for determining oxidation number of the
atoms.
1.
The oxidation number of the element in the free
(or) elementary state is always Zero.
Oxidation number of Helium in He
= 0
Oxidation number of chlorine in Cl2 = 0
2.
The oxidation number of the element in
monoatomic ion is equal to the charge on the ion.
3.
The oxidaton number of fluorine is always - 1 in
all its compounds.
4.
Hydrogen is assigned oxidation number +1 in all
its compounds except in metal hydrides. In metal hydrides like NaH, MgH2, CaH2,
LiH, etc., the oxidation number of hydrogen is -1.
5.
Oxygen is assigned oxidation number -2 in most
of its compounds, however in peroxides like H2O2, BaO2,
Na2O2, etc its oxidation number is -
6.
Similarly the exception also occurs in compounds
of Fluorine and oxygen like OF2 and O2F2 in
which the oxidation number of oxygen is +2 and +1 respectively.
7.
The oxidation numbers of all the atoms in
neutral molecule is Zero. In case of polyatomic ion the sum of oxidation
numbers of all its atoms is equal to the charge on the ion.
8.
In binary compounds of metal and non-metal the
metal atom has positive oxidation number while the non-metal atom has negative
oxidation number. Example. Oxidation number of K in KI is +1 but oxidation
number of I is - I.
9.
In binary compounds of non-metals, the more
electronegative atom has negative oxidation number, but less electronegative
atom has positive oxidation number. Example : Oxidation number of Cl in ClF3 is
positive (+3) while that in ICl is negative (-1).
Problem
Calculate the
oxidation number of underlined elements in the following species.
CO2, Cr2O72-,
Pb3O4, PO43-
Solution
1. C in CO2. Let oxidation number of
C be x. Oxidation number of each O atom = -2. Sum of oxidation number of all
atoms = x+2 (-2) Þ x - 4.
As it is neutral molecule, the sum must be equal to zero.
\ x-4 = 0 (or) x = + 4
2. Cr in Cr2O72-.
Let oxidation number of Cr = x. Oxidation number of each oxygen atom =-2. Sum
of oxidation number of all atoms
2x + 7(-2)
=
2x - 14
Sum of oxidation number must be equal to the charge on the ion.
Thus, 2x -
14
= -2
2x = +12
x
= 12/2
x
= 6
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2026 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.