Let us consider a uniform magnetic field of induction B acting along the Z-axis. A particle of charge q and mass m moves in XY plane.

*Motion of a charged particle in a uniform magnetic field.*

Let us consider a uniform magnetic field of induction B acting along the Z-axis. A particle of charge *q* and mass *m* moves in XY plane.

At a point P, the velocity of the particle is *v*. (Fig 3.20)

Since the force acts perpendicular to its velocity, the force does not do any work. So, the magnitude of the velocity remains constant and only its direction changes. The force F acting towards the point O acts as the centripetal force and makes the particle to move along a circular path. At points Q and R, the particle experiences force along QO and RO respectively.

F = *Bqv* sin 900 = *Bqv*

This magnetic lorentz force provides the necessary centripetal force.

It is evident from this equation, that the radius of the circular path is proportional to (i) mass of the particle and (ii) velocity of the particle

This equation gives the angular frequency of the particle inside the magnetic field.

Period of rotation of the particle,

From equations (2) and (3), it is evident that the angular frequency and period of rotation of the particle in the magnetic field do not depend upon (i) the velocity of the particle and (ii) radius of the circular path.

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail

Physics : Effects of electric current : Higher Secondary(12 Std) : Motion of a charged particle in a uniform magnetic field |

**Related Topics **

Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.