Electron Transport Chain.
An
electron transport chain consists of a sequence of carrier molecules that are
capable of oxidation and reduction. In Eukaryotic cell, the ETC is contained in
the inner membrane of mitochondria or chloroplast membrane, whereas in
prokaryotic cells, it is found in plasma membrane or cytoplasmic membrane.
The ETC
is carried out through a series of electron transporters embedded in the inner
mitochondrial membrane that transfer electrons from electron donors NADH and
FADH2 to acceptor such as molecular Oxygen. In the process, protons
are pumped from the mitochondrial matrix to the inner membrane space, and
eventually combine with O2 and H+ to form water (Figure 4.6).
HOTS: Why each NADH makes
3 ATPs and each FADH2 makes 2 ATPs?
As the
electrons flow through the chain, much of their free energy is conserved in the
form of ATP. The process by which energy from electron transport is used to
make ATP is called as oxidative phosphorylation. Respiratory chain is an
electron transport chain where a pair of electrons or hydrogen atoms containing
electron from the substrate oxidized is coupled to reduction of oxygen to
water. The mitochondrial system is arranged into three complexes of electron
carriers.
They are
1. Flavoproteins:
These
proteins contain flavin, a coenzyme
derived from riboflavin (Vit B12). One important flavoprotein is
flavin mono nucleotide.
2. Ubiquinones
(coenzyme Q): These are
small non protein carriers.
3. Cytochromes: These are proteins with iron containing group, capable of
existing alternately as reduced (Fe2+) and oxidized form (Fe3+).
Cytochromes involved in ETC include cyt (b),cyt c1, cyt c, cyt a,
cyt a3.
The first step in electron transport chain is the transfer of high energy electrons from NADH to FMN. This transfer actually involves the passage of hydrogen atom with 2 e− to FMN, which then picks up an additional H+ from the surrounding aqueous medium.
As a
result of the first transfer, NADH is oxidized to NAD+, and FMN is
reduced to FMNH2.
In the
second step, FMNH2 passes 2 H+ to the other side of the
mitochondrial membrane and passes 2 e− to coenzyme Q. As a result,
FMNH2 is oxidized to FMN. Coenzyme Q also picks up additional 2H+
from the surrounding aqueous and releases to other side of the membrane.
In the
next step, electrons are passed successively from coenzyme Q to cyt b1,
cyt c1, cyt c, cyt a, cyt a3. Each cytochrome in the
chain is reduced, as it picks up electrons and is oxidized as it gives up
electrons. The last cytochrome cyt a3 passes its electrons to molecular O2
which picks up protons from the surrounding medium to form H2O.
FADH2 derived from the Krebs cycle is another source of electrons. Thus at the end of ETC, NADH pumps three protons (synthesizes 3ATPs) whereas FADH2 pumps only two protons (synthesizes 2ATPs).
Chemiosmotic
mechanism of ATP synthesis was first proposed by the Biochemist, Peter Mitchell
in 1961. In ETC, when energetic electrons from NADH pass down the carriers,
some of the carriers (proton pumps) in the chain pump [actively transport]
protons across the membrane to inner membrane space. Thus in addition to a
concentration gradient, an electrical charge gradient is created. The resulting
electro chemical gradient has potential energy called proton motive force.
The
proton diffuses across the membrane through protein channels that contain an
enzyme called ATP synthase. When this flow occurs, energy is released and is
used by the enzyme to synthesize ATP from ADP and phosphate.
At the
end of the chain, electrons join with protons and O 2 in the matrix
fluid to form H2O. Thus O2 is the final electron
acceptor. ETC also operates in photophosphorylation and is located in thylakoid
membrane of Cyanobacteria (BGA), and of eukaryotic chloroplasts.
Overview
of Aerobic respiration (Figure 4.7):
• Electron
transport chain regenerates NAD and FAD which can be used again in Glycolysis
and Krebs cycle.
• Various
electrons transfer in the electron transport chain generates about 34 ATP, (10
NADH = 10 × 3 = 30+2FADH2=2×2=4).
• A total of 38 ATP molecules is generated from one molecule of glucose oxidized in prokaryotes, whereas in eukaryotes, 36 molecules of ATP is generated because in eukaryotes, some energy is lost when electrons are shuttled across the mitochondrial membranes that separate Glycolysis (in the cytoplasm) from the electron transport chain (Table 4.2). There is no such separation exists in prokaryotes.
C6H12O6 + 6CO2 + 38ADP + 38Pi → 6CO2 + 6H2O + 38 ATP
Table
4.2: Net gain of ATP produced during aerobic respiration of glucose in
prokaryotes
Glycolysis
1.
Oxidation of glucose to Pyruvic acid.
2.
Production of 2 NADH
Preparatory step
2 ATP
(substrate level phosphorylation)
6 ATP
(Oxidative phosphorylation in ETC)
Preparatory step
1. Formation
of acetyl CoA produces 2NADH
6 ATP
(Oxidative phosphorylation in ETC)
Krebs cycle
1.
Oxidation of succinyl CoA to succinic acid
2.
Production of 6 NADH
3.
Production of 2 FADH
2 ATP
(Substrate level phosphorylation)
18 ATP
(Oxidative phosphorylation in ETC)
4 ATP
(Oxidative phosphorylation in ETC)
Total 38 ATP
1 NADH =
3 ATPs and 1FADH2 = 2 ATP
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.