Home | | TELEVISION AND VIDEO ENGINEERING | Color Signal Transmission and Reception

Chapter: Television and Video Engineering : Essentials of Color Television

Color Signal Transmission and Reception

Frequency interleaving in television transmission is possible because of the relationship of the video signal to the scanning frequencies which are used to develop it.

COLOR SIGNAL TRANSMISSION AND RECEPTION

 

Frequency interleaving in television transmission is possible because of the relationship of the video signal to the scanning frequencies which are used to develop it. It has been determined that the energy content of the video signal is contained in individual energy ‘bundles’ which occur at harmonics of the line frequency (15.625, 31.250 ... KHz) the components of each bundle being separated by a multiplier of the field frequency (50, 100, ... Hz).

 The shape of each energy bundle shows a peak at the exact harmonics of the horizontal scanning frequency. This is illustrated in Fig. As shown there, the lower amplitude excursions that occur on either side of the peaks are spaced at 50 Hz intervals and represent harmonics of the vertical scanning rate.

The vertical sidebands contain less energy than the horizontal because of the lower rate of vertical scanning. Note that the energy content progressively decreases with increase in the order of harmonics and is very small beyond 3.5 MHz from the picture carrier.

 

It can also be shown that when the actual video signal is introduced between the line sync pedestals, the overall spectra still remains ‘bundled’ around the harmonics of the line frequency and the spectrum of individual bundles become a mixture of continuous portion due to the video signal are discrete frequencies due to the field sync as explained earlier.

 

Therefore, a part of the bandwidth in the monochrome television signal goes unused because of spacing between the bundles. This suggests that the available space could be occupied by another signal. It is here where the color information is located by modulating the color difference signals with a carrier frequency called ‘color subcarrier’. The carrier frequency is so chosen that its sideband frequencies fall exactly mid-way between the harmonics of the line frequency.

 

This requires that the frequency of the subcarrier must be an odd multiple of half the line frequency. The resultant energy clusters that contain color information are shown in Fig. by dotted chain lines along with the Y signal energy bands. In order to avoid crosstalk with the picture signal, the frequency of the subcarrier is chosen rather on the high side of the channel bandwidth.

 

It is 567 times one-half the line frequency in the PAL system. This comes to: (2 × 283 + 15625/2 = 4.43 MHz. Note that in the American 525 line system, owing to smaller bandwidth of the channel, the subcarrier employed is 455 times one-half the line frequency i.e., (2 × 227 + 1) 15750/2 and is approximately equal to 3.58 MHz.

 

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
Television and Video Engineering : Essentials of Color Television : Color Signal Transmission and Reception |


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.