Home | | Basic Concept of Biotechnology | Similarities and Differences between Embryonic and Adult stem cells

Chapter: Basic Concept of Biotechnology - Animal Biotechnology

| Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail |

Similarities and Differences between Embryonic and Adult stem cells

Human embryonic and adult stem cells each have advantages and disadvantages regarding potential use for cell-based regenerative therapies.

Similarities and Differences between Embryonic and Adult stem cells

Human embryonic and adult stem cells each have advantages and disadvantages regarding potential use for cell-based regenerative therapies. One major difference between adult and embryonic stem cells is their different abilities in the number and type of differentiated cell types they can become. Embryonic stem cells can become all cell types of the body because they are pluripotent. Adult stem cells are thought to be limited to differentiating into different cell types of their tissue of origin. Embryonic stem cells can be grown relatively easily in culture. Adult stem cells are rare in mature tissues, so isolating these cells froman adult tissue is challenging, and methods to expand their numbers in cell culture have not yet been worked out. This is an important distinction, as large numbers of cells are needed for stem cell replacement therapies. Scientists believe that tissues derived from embryonic and adult stem cells may differ in the likelihood of being rejected after transplantation. We don’t yet know for certain whether tissues derived from embryonic stem cells would cause transplant rejection, since relatively few clinical trials have tested the safety of transplanted cells derived from hESCS. Adult stem cells, and tissues derived from them, are currently believed less likely to initiate rejection after transplantation. This is because a patient’s own cells could be expanded in culture, coaxed into assuming a specific cell type (differentiation), and then reintroduced into the patient. The use of adult stem cells and tissues derived from the patient’s own adult stem cells would mean that the cells are less likely to be rejected by the immune system. This represents a significant advantage, as immune rejection can be circumvented only by continuous administration of immunosuppressive drugs, and the drugs themselves may cause deleterious side effects.

Induced pluripotent stem cells (iPSCs) are adult cells that havebeen genetically reprogrammed to an embryonic stem cell–like state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells. Although these cells meet the defining criteria for pluripotent stem cells, it is not known if iPSCs and embryonic stem cells differ in clinically significant ways. Mouse iPSCs were first reported in 2006, and human iPSCs were first reported in late 2007. Mouse iPSCs demonstrate important characteristics of pluripotent stem cells, including expressing stem cell markers, forming tumors containing cells from all three germ layers, and being able to contribute too many different tissues when injected into mouse embryos at a veryearly stage in development. Human iPSCs also express stem cell markers and are capable of generating cells characteristic of all three germ layers. Although additional research is needed, iPSCs are already useful tools for drug development and modeling of diseases, and scientists hope to use them in transplantation medicine. Viruses are currently used to introduce the reprogramming factors into adult cells, and this process must be carefully controlled and tested before the technique can lead to useful treatments for humans. In animal studies, the virus used to introduce the stem cell factors sometimes causes cancers. Researchers are currently investigating non-viral delivery strategies. In any case, this breakthrough discovery has created a powerful new way to “de-differentiate” cells whose developmental fates had been previously assumed to be determined. In addition, tissues derived from iPSCs will be a nearly identical match to the cell donor and thus probably avoid rejection by the immune system. The iPSC strategy creates pluripotent stem cells that, together with studies of other types of pluripotent stem cells, will help researchers learn how to reprogram cells to repair damaged tissues in the human body.


Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail


Copyright © 2018-2020 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.