Population PK of Monoclonal Antibodies
Compared to small molecule drugs, monoclonal antibodies typically exhibit less inter- and intra-subject variability of the standard PK parameters geographic location can differ from a selected group of “normal” subjects. These covariates can have substantial influence on PK parameters. Therefore, good therapeutic practice should always be based on an understanding of both the influence of covariates on PK parameters as well as the PK variability in a given patient population. With this knowledge, dosage adjustments can be made to accommodate differences in PK due to genetic, environmental, physiological or pathological factors, for instance in case of compounds with a relatively small therapeutic index. The framework of application of population PK during drug development is summarized in the FDA guidance document entitled “Guidance for Industry—Population Pharmacokinetics” (www. fda.gov).
For population PK data analysis, there are generally two reliable and
practical approaches. One approach is the standard two-stage method, which
estimates parameters from the drug concentration data for an individual subject
during the first stage. The estimates from all subjects are then combined to
obtain a population mean and variability estimates for the parameters of
interest. The method works well when sufficient drug concentration-time data
are available for each individual patient. A second approach, the non-linear
mixed effect modeling (NONMEM) attempts to fit the data and partition the
unpredictable differences between theoretical and observed values into random
error terms. The influence of fixed effect (i.e., age, sex, body weight,etc)
can be identified through a regression model building process.
The original scope of using NONMEM was that it is applicable even when
the amount of time-concentration data obtained from each individual is sparse
and conventional compartmental PK analyses are not feasible. This is usually
the case during the routine visits in Phase III or IV clinical studies.
Currently, this approach is applied far beyond its original scope due to its
flexibility and robustness. It has been used to describe data-rich Phase I and
Phase IIa studies or even preclinical data to guide and expedite drug
development from early preclinical to clinical studies (Aarons et al., 2001;
Chien et al., 2005).
There is increasing interest in the use of population PK and PD analyses
for different anti-body products (i.e., antibodies, antibody fragments, or
antibody fusion proteins) over the past 10 years (Lee et al., 2003; Nestorov et
al., 2004; Zhou et al., 2004; Yim et al., 2005; Hayashi et al., 2006). One
example involving analysis of population plasma concentration data involved a
dimeric fusion protein, etanercept (Enbrel ). A one-compartment first-order
absorption and elimination population PK model with interindividual and
interoccasion variability on clearance, volume of distribution, and absorption
rate constant, with covariates of sex and race on apparent clearance and body
weight on clearance and volume of distribution, was developed for etanercept in
rheumatoid arthritis adult patients (Lee et al., 2003). The population PK model
foretanercept was further applied to pediatric patients with juvenile
rheumatoid arthritis and established the basis of the 0.8 mg/kg once-weekly
regimen in pediatric patients with juvenile rheumatoid arthritis (Yim et al.,
2005). Unaltered etanercept PK with concurrent methotrexate in patients with
rheumatoid arthritis has been demonstrated in a Phase IIIb study using
population PK modeling approach (Zhou et al., 2004). Thus, no etanercept dose
adjustment is needed for patients taking concurrent methotrexate. A simulation
exercise of using the final population PK model of subcutaneously administered
etanercept in patients with psoriasis indicated that the two different dosing
regimens (50 mg every week vs. 25 mg every other week) provide a similar
steady-state exposure (Nestorov et al., 2004). Therefore, their respective efficacy
and safety profiles are likely to be similar as well.
An added feature is the development of a population model involving both
PK and PD. Population PK/PD modeling has been used to characterize drug PK and
PD with models ranging from simple empirical PK/PD models to advanced
mechanistic models by using drug-receptor binding principles or other
physiologically based principles. A mechanism-based population PK and PD
binding model was developed for a recombinant DNA-derived humanized IgG1
monoclonal antibody, oma-lizumab (Xolair ) (Hayashi et al., 2006). Clearance
and volume of distribution for omalizumab varied with body weight, whereas
clearance and rate of produc-tion of IgE were predicted accurately by baseline
IgE and overall, these covariates explained much of the inter-individual
variability. Furthermore, this me-chanism-based population PK/PD model enabled
the estimation of not only omalizumab disposition, but also the binding with
its target, IgE, and the rate of production, distribution and elimination of
IgE.
Population PK/PD analysis can capture uncer-tainty and the expected
variability in PK/PD data generated in preclinical studies or early phases of
clinical development. Understanding the associated PK or PD variability and
performing clinical trial simulation by incorporating the uncertainty from the
existing PK/PD data allows projecting a plau-sible range of doses for future
clinical studies and final practical uses.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.