Home | | Digital Logic Circuits | Fixed Logic Versus Programmable Logic

Fixed Logic Versus Programmable Logic - | Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail |

Chapter: Digital Logic Circuits - Asynchronous Sequential Circuits and Programmable Logic Devices

Fixed Logic Versus Programmable Logic

In the world of digital electronic systems, there are three basic kinds of devices: memory, microprocessors, and logic.

What is Programmable Logic?

 

In the world of digital electronic systems, there are three basic kinds of devices: memory, microprocessors, and logic. Memory devices store random information such as the contents of a spreadsheet or database. Microprocessors execute software instructions to perform a wide variety of tasks such as running a word processing program or video game. Logic devices provide specific functions, including device-to-device interfacing, data communication, signal processing, data display, timing and control operations, and almost every other function a system must perform.

 

Fixed Logic Versus Programmable Logic

 

Logic devices can be classified into two broad categories - fixed and programmable. As the name suggests, the circuits in a fixed logic device are permanent, they perform one function or set of functions - once manufactured, they cannot be changed. On the other hand, programmable logic devices (PLDs) are standard, off-the-shelf parts that offer customers a wide range of logic capacity, features, speed, and voltage characteristics - and these devices can be changed at any time to perform any number of functions.

 

With fixed logic devices, the time required to go from design, to prototypes, to a final manufacturing run can take from several months to more than a year, depending on the complexity of the device. And, if the device does not work properly, or if the requirements change, a new design must be developed. The up-front work of designing and verifying fixed logic devices involves substantial "non-recurring engineering" costs, or NRE. NRE represents all the costs customers incur before the final fixed logic device emerges from a silicon foundry, including engineering resources, expensive software design tools, expensive photolithography mask sets for manufacturing the various metal layers of the chip, and the cost of initial prototype devices. These NRE costs can run from a few hundred thousand to several million dollars.

 

With programmable logic devices, designers use inexpensive software tools to quickly develop, simulate, and test their designs. Then, a design can be quickly programmed into a device, and immediately tested in a live circuit. The PLD that is used for this prototyping is the exact same PLD that will be used in the final production of a piece of end equipment, such as a network router, a DSL modem, a DVD player, or an automotive navigation system. There are no NRE costs and the final design is completed much faster than that of a custom, fixed logic device.

 

Another key benefit of using PLDs is that during the design phase customers can change the circuitry as often as they want until the design operates to their satisfaction. That's because PLDs are based on re-writable memory technology - to change the design, the device is simply reprogrammed. Once the design is final, customers can go into immediate production by simply programming as many PLDs as they need with the final software design file.

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail


Copyright © 2018-2021 BrainKart.com; All Rights Reserved. (BS) Developed by Therithal info, Chennai.