Home | | Geography 12th Std | Global Navigation Satellite System (GNSS)

Applications of GNSS, System operated in different countries - Global Navigation Satellite System (GNSS) | 12th Geography : Chapter 6 : Geoinformatics

Chapter: 12th Geography : Chapter 6 : Geoinformatics

Global Navigation Satellite System (GNSS)

GNSS refers to the collection of the world's global satellite based positioning systems.

Global Navigation Satellite System (GNSS)

GNSS refers to the collection of the world's global satellite based positioning systems. It includes GPS (United States) GLONASS (Russia) GALILEO (European Union) BEODOU (China) IRNSS (India) QZSS (Japan). GNSS can provide centimetre level accuracy with a low-cost receiver, if an error correction technique is used. GNSS are recognized to be the systems of choice in outdoor environments and, to a great extent, GNSS bi static radar with the GPS satellite one of the most accurate source of position (and precise timing) information when it is available.


The first satellite navigation system was Transit, a system deployed by the US military in 1960’s. Transit’s operations were based on the Doppler Effect: the satellites travelled on well-known paths and broadcast their signals on well-known radio frequency. The received frequency will differ slightly from the broadcast frequency because of the movement of the satellite with respect to the receiver. The satellite broad cast signals that contains orbital data (from which the position of the satellite can be calculated) and the precise time, the signals is transmitted. There are multiple constellations of GNSS satellites orbiting the earth. GNSS satellites’ orbit situated about 20,000 km above the earth’s surface. They are moving very fast, several kilometres per second. The latest generation of GNSS satellites (Block IIF) weight over 1,400 kg.

 

GNSS system operated in different countries

The following are the Global Navigation satellite Systems:

GPS (United States)

GPS was the first GNSS system. GPS was launched in the late 1970s by the United States Department of Defence. It uses a constellation of 24 satellites, and provides global coverage.

GLONASS (Russia)

The premier Soviet military navigation network was to be comprised of Uragan satellites. At the end of the Cold War, the constellation was unclassified under the name GLONASS -- a Russian abbreviation of Global Navigation Satellite System. Global Navigation Satellite System by Russian Aerospace Defence Forces is a space-based satellite navigation system.

The life style of GNSS satellites 5- 7 years and new satellites are to be launched after a specific time interval in order to fill the gap due to ageing satellites. GLONASS proves very beneficial for Russian territory by 2010. In 2011, restoration of system is improved to enable full global coverage.


GALILEO (European Union)

Galileo is Europe’s own global navigation satellite system, providing a highly accurate, guaranteed global positioning service under civilian control. Currently providing Initial Services, Galileo is interoperable with GPS and Glonass, the US and Russian global satellite navigation systems. By offering dual frequency as standard, Galileo is set to deliver real-time positioning accuracy down to the metre range. The Galileo constellation in space will comprise 30 satellites in total. There will be 24 operational satellites, plus 6 spare satellites, circulating in medium Earth orbit on three orbital planes.

BEIDOU (China)

BeiDou Navigation Satellite System (BDS) is a Chinese satellite Navigation system. It consists of two separate satellite constellations. The first BeiDou system is officially called the BeiDou Satellite Navigation Experimental System and also known as BeiDou-1.

On December 27, 2018, Beidou-3 officially began to provide global services. The Beidou-3M/G/I satellites represent the orbital segment of the third phase of the Chinese Beidou navigation system which uses satellites in Medium Earth Orbit and Geosynchronous Orbit and is also known as the Compass Navigation Satellite System.

Japan Aerospace Exploration Agency (QZSS Japan)

QZSS is a regional navigation satellite system that provides service to Japan and the Asia-Oceania region. QZSS (nickname of Michibiki - meaning to 'guide' or 'show the way') QZSS is a Japanese satellite positioning system composed mainly of satellites in quasi-zenith orbits (QZO). However, the term “Quasi-Zenith Satellite (QZS)” can refer to both satellites in QZO and geostationary orbits (GEO). For that reason, the name “QZO satellite” is used when it is necessary to specifically refer to satellites in QZO. Satellite positioning systems use satellite signals to calculate position information. The QZSS is sometimes called the “Japanese GPS.”

IRNSS (Indian Regional Navigational Satellite System)

IRNSS is an autonomous regional satellite navigation system being developed by ISRO (Indian Space Research Organization). It is designed to provide geospatial positioning information within the Indian sub-continent. It enables users to map out their location (altitude, longitude and latitude). The objective of developing IRNSS was to cut down India's dependency on foreign navigation satellite systems.


It provides location information service to users in India and the region extending for up to 1,500 km from the Indian boundary. This is the primary service area of IRNSS information service to users in India and the region extending up to 1500 km from Indian boundary.

IRNSS aims to provide the following services:

1. Standard Positioning Service (SPS) for civilian, research & commercial use,

2. Restricted Service (RS) for authorized users. For example in defence, IRNSS is used for ground, aerial and marine navigation, disaster management, mobile phone integration, mapping and visual & voice navigation for drivers, among others.

Fact File

The battle for the world’s fastest supercomputer has a new victor: Summit


According to IBM, Summit is able to achieve 200 peta flops of performance, or 200 quadrillion calculations per second. This power marks a significant gain on Sunway TaihuLight, which performs a still-staggering 87 petaflops. Summit holds more than 10 peta bytes of RAM, and its funding came as part of a $325 million program funded by the United States Department of Energy. Each of Summit’s 4,608 nodes holds two IBM Power9 chips that run at 3.1 GHz.

 

Applications of GNSS

GNSS applications are widely used to get the quick information about a particular field. Some of the commercial applications are Consumers, Transportation, GIS, Machine Control Port Automation, Precision Agriculture, Construction, Marine Mining, Unmanned Vehicles Surveying, Defence, and Aerial Photogrammetry, etc.

Consumer

GNSS technology has been adopted by the consumer market, in an ever-increasing range of products. GNSS receivers are now routinely integrated into smart phones, to support applications that display maps showing the location of and best route to stores and restaurants.

Transportation

In rail transportation, GNSS is used to track the location of locomotives and rail cars, maintenance vehicles and wayside equipment, for display at central monitoring consoles. Knowing the precise location of rail equipment reduces accidents, delays, and operating costs, enhancing safety, track capacity, and customer service. In aviation, GNSS is being used for aircraft navigation from departure, en route, to landing.

Port Automation

Using GNSS, shipping hubs can improve their operating efficiency by tracking the movement and placement of containers about their yards. Many cranes are equipped with GNSS based steering devices that determine the crane’s position and keep it travelling in the desired path, improving accuracy and productivity as well as the safety of operators and workers on the ground.


Machine Control

GNSS technology is being integrated into equipment such as bulldozers, excavators, graders, pavers and farm machinery to enhance productivity in the real-time operation of this equipment, and to provide situational awareness information to the equipment operator.


Precision Agriculture

In precision agriculture, GNSS-based applications are used to support farm planning, field mapping, soil sampling, tractor guidance, and crop assessment. More precise application of fertilizers, pesticides and herbicides reduces cost and environmental impact.

Surface Mining

GNSS information is being used to efficiently manage the mining of an ore body and the movement of waste material. GNSS equipment installed on shovels and haul trucks provides position information to a computer-controlled dispatch system to optimally route haul trucks to and from each shovel.

Survey

Using GNSS, it is possible for a single surveyor to accomplish in one day what might have taken a survey crew of three people a week to complete. Determining a new survey position once required measuring distances and bearings from an existing (known) survey point to the new point.



Tags : Applications of GNSS, System operated in different countries , 12th Geography : Chapter 6 : Geoinformatics
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
12th Geography : Chapter 6 : Geoinformatics : Global Navigation Satellite System (GNSS) | Applications of GNSS, System operated in different countries


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.