Home | | Maths 12th Std | Fundamental Theorems of Integral Calculus and their Applications

Chapter: 12th Maths : UNIT 9 : Applications of Integration

Fundamental Theorems of Integral Calculus and their Applications

These theorems establish the connection between a function and its anti-derivative (if it exists).

Fundamental Theorems of Integral Calculus and their Applications

We observe in the above examples that evaluation of b∫af ( x)dx as a limit of the sum is quite tedious, even if f ( x) is a very simple function. Both Newton and Leibnitz, more or less at the same time, devised an easy method for evaluating definite integrals. Their method is based upon two celebrated theorems known as First Fundamental Theorem and Second Fundamental Theorem of Integral Calculus. These theorems establish the connection between a function and its anti-derivative (if it exists). In fact, the two theorems provide a link between differential calculus and integral calculus. We state below the above important theorems without proofs.

Theorem 9.1 (First Fundamental Theorem of Integral Calculus)

If f ( x) be a continuous function defined on a closed interval [a , b] and F (x= x∫a f (u)dua < x < then, d/dx F (x= f ( x). In other words, F ( x) is an anti-derivative of f ( x).

Theorem 9.2 (Second Fundamental Theorem of Integral Calculus)

If f ( x) be a continuous function defined on a closed interval [a , b] and F ( x) is an anti derivative of f ( x), then,

bfa ( x)dx = F (b) âˆ’ F ( a).

Note

Since F (b− F ( a) is the value of the definite integral (Riemann integral) b∫a f ( x)dx, any arbitrary constant added to the anti-derivative F ( x) cancels out and hence it is not necessary to add an arbitrary constant to the anti-derivative, when we are evaluating definite integrals. As a short-hand form, we write F (b− F ( a= [ F ( x)]ba . The value of a definite integral is unique.

By the second fundamental theorem of integral calculus, the following properties of definite integrals hold. They are stated here without proof.


i.e., definite integral is independent of the change of variable.


i.e., the value of the definite integral changes by minus sign if the limits are interchanged.


This property is used for evaluating definite integrals by making substitution.

We illustrate the use of the above properties by the following examples.








 


Example 9.14

Evaluate : 1.5∫0 [x2] dx, where [ x] is the greatest integer function.

Solution

We know that the greatest integer function [ x] is the largest integer less than or equal to x. In other words, it is defined by [ x ] = n , if n â‰¤ x < (n +1) , where n is an integer.


We note that the above function is not continuous on [0,1.5] .

But, it is continuous in each of the sub-intervals [0,1) , [1, √2 ) and [ √2,1.5] ; that is, it is piece-wise continuous on [0,1.5] .

See Fig. 9.6. Hence, we get



Next, we give examples to illustrate the application of Property 5.




We derive some more properties of definite integrals.

 

Property 6


b∫a f ( x) dx = b∫a f (a +b âˆ’ x) dx

Proof

Let a + b âˆ’ x . Then, we get dx = −du .

When a , u = a + b âˆ’ a = b . When x = b , we get u = a + b âˆ’ b = a .

∴ b∫a f ( x)dx a∫b f ( a + b âˆ’u)(−du) = b∫a f ( a + b âˆ’u)du

= ∫ab f ( a + b âˆ’ x)dx .

Note

Replace a by 0 and b by a in the above property we get the following property

∫ a f ( x) dx = âˆ«0a f ( a âˆ’ x ) dx .


 

Property 7


 

Property 8

If f ( x) is an even function, then âˆ’a∫a ( x) dx = 20∫a f ( x) dx.

(Recall that a function ( x) is an even function if and only if (− x ) = f ( x). )

Proof

By property 3, we have

−a∫a f ( x) dx = âˆ’a∫0 f ( x) dx + 0∫a f ( x) dx .

In the integral 0∫−( x) dx , let us make the substitution, x = −u. Then, dx = −du.

When x = âˆ’a , we get u = a , when x = 0 , we get u = 0 , So, we get

−a∫0 f ( x) dx = 0∫a f ( âˆ’ u)( âˆ’du) = 0∫a f ( âˆ’u) du = 0∫a f ( âˆ’ x) dx = 0∫a f ( x) dx . ... (2)

Substituting equation (2) in equation (1), we get

−a∫a f ( x) dx = 0∫a f (x) dx + 0∫a f (x) dx = 20∫a f (x) dx .

 

Property 9

If f ( x) is an odd function, then âˆ’a∫a f ( xdx = 0.

(Recall that a function f ( x) is an odd function if and only if f (− x ) = − f ( x). )

Proof

By property 3, we have

−a âˆ«a f ( x) dx âˆ’a âˆ« 0( x) dx + 0∫a f ( x) dx .

Consider âˆ’a∫0 f ( xdx . In this integral, let us make the substitution, x = −u. Then, dx = −du.

When x = âˆ’a , we get u = a ; when x = 0 , we get u = 0 . So, we get

−a∫0 f ( x) dx a âˆ«0 f ( âˆ’ u)( âˆ’du) = a∫0 f ( âˆ’u) du = a âˆ«0 f ( âˆ’ x) dx = âˆ’ a âˆ«0 f ( x) dx . ... (2)

Substituting equation (2) in equation (1), we get

a∫−a f ( x) dx = a∫0 f ( x) dx âˆ’ a∫0 f ( x) dx = 0

 

Property 10

If f (2a âˆ’ x ) = f ( x), then 2a∫0 f ( xdx = 2 a∫0 f ( xdx.

Proof

By property 7, we have

2a∫0 f ( x) dx = a∫0 [ f ( x) + f ( 2− x ) dx.       ...(1)

Setting the condition f (2a âˆ’ x ) = f (x) in equation (1), we get

0∫2a f (x) dx = a∫0 [ f () + f (x)]dx = 2 a∫0 f (x) dx.

 

Property 11

If f ( 2a âˆ’ x ) = − f ( x), then 2a∫0 xdx = 0.

Proof

By property 7, we have

2a âˆ«0 f ( x) dx = a∫0 [ f ( x) + f ( 2− x ) ]dx.         ... (1)

Setting the condition f (2a âˆ’ x ) = − f (x) in equation (1), we get

2a∫0 f ( x) dx = âˆ«0a [ f ( x ) âˆ’ f ( x)]dx = 0.

 

Property 12


Note

This property help us to remove the factor x present in the integrand of the LHS.

 

Example 9.20

Show that  , where g (sin x) is a function of sin x .

Solution

We know that

2a∫0 f ( x) dx = 2 a∫0 f ( x) dx if f (2a âˆ’ x ) = f (x) .

Take 2a = Ï€ and f (x= g (sin x) .

Then, f (2a âˆ’ x= g (sin(Ï€ âˆ’ x)) = g (sin x= f (x) .

∴∫02a f (x) dx = 2∫0a f (x) dx .


Result


Note

The above result is useful in evaluating definite integrals of the type Ï€âˆ«0 g (sin xdx .

 

Example 9.21


 

Example 9.22

Show that 2π∫0 g (cos xdx =20∫π g (cos xdx , where g (cos x) is a function of cos x .

Solution

Take 2a = 2Ï€ and (x) = g (cos x) .

Then, (2− x) = (2Ï€ âˆ’ x) = g (cos(2Ï€ âˆ’ x)) = g (cos x) = f (x)

∴ 2a∫0 f (x) dx = 2 a∫0 f (x) dx .

∴ 2a∫0 (cos x) dx 2 Ï€âˆ«0 g (cos xdx .

Result

2π∫0 g (cos x) dx =2 Ï€âˆ«0 g (cos x) dx.

Note

The above result is useful in evaluating definite integrals of the type 2π∫0 g (cos xdx.

 

Example 9.23


Substituting x = a + u , we have dx = du ; when x = a, u = 0 and when x = 2a, u = a .

∴2a∫a f (x) dx = a∫0 f (a + u du a∫0 f (u ) du , since f (x) = f (a + x)

a∫0 f (x) dx . ... (2)

Substituting (2) in (1), we get

2a∫0 f (x) dx = 2a∫0 f (x) dx .

 

Example 9.24


Solution

Let f(x) = x cos x .Then f(-x) = (− x) cos(− x) = xcos = − f(x).

So f(x) = x cos x is an odd function.

Hence, applying the property, for odd function f(x)










Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
12th Maths : UNIT 9 : Applications of Integration : Fundamental Theorems of Integral Calculus and their Applications |

Related Topics

12th Maths : UNIT 9 : Applications of Integration


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.