Construction
of special angles without using protractor.
(i) Construction of angle of measure 60°
Step 1: Draw a line. Mark a point A on it.
Step 2: With A as center draw an arc of convenient radius to
the line to meet at a point B.
Step 3: With the same radius and B as center draw an arc to cut the previous arc
at C.
Step 4: Join AC. Then ∠BAC is the required angle with the measure
60°.
(ii) Construction of angle of measure 120°.
We know that there are two 60° agnels in 120°. Hence, to construct 120°, we can construct two 60° angles consecutively as follows.
Step 1: Draw a line. Mark a point A on it.
Step 2: With A as center, draw an arc of convenient
radius to the line at a point B.
Step 3: With the same radius and B as center, draw an arc to cut the previous arc
at C.
Step 4: With the same radius and C as center, draw an arc to cut the arc drawn in step 2 at D.
Step 5: Join AD. Then ∠BAD is the required angle with measure 120°.
(iii) Construction of angle of measure 30°
Since 30° is half of 60°, we can construct 30° by
bisecting the angle 60°.
Step 1: Construct angle 60° [Refer Construction
of angle of measure 60° (i)].
Step 2: With B as center, draw an arc of convenient
radius in the interior of ∠BAC.
Step 3: With the same radius and C as center, draw an arc to cut the previous arc at D.
Step 4: Join AD. Then ∠BAD is the required angle with measure 30° [Think about ∠DAC?]
(iv) Construction of angle of measure 90°
Step 1: Construct angle 120° [Refer Construction of angle of measure 120° (ii)].
Step 2: With C as center, draw an arc of convenient radius in the interior of ∠CAD.
Step 3: With the same radius and D as center,
draw an arc to cut drawn in step 3 at E.
Step 4: Join AE. Then ∠BAD = 90° is the required angle
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.