Photoperiodism
Trees
take several years for initiation of flowering whereas an annual herb flowers
within few months. Each plant requires a specific time period to complete their
vegetative phase which will be followed by reproductive phase as per their
internal control points through Biological Clock. The physiological mechanisms
in relation to flowering are controlled by i) light period
(Photoperiodism) and ii) temperature
(Vernalization).
The
physiological change on flowering due to relative length of light and darkness
(photoperiod) is called Photoperiodism.
The term photoperiodism was coined by Garner
and Allard (1920) when they observed
this in ‘Biloxi’ variety of soybean (Glycine
max) and ‘Maryland mammoth’ variety of tobacco (Nicotiana tabacum). The photoperiod required to induce flowering is
called critical day length. Maryland
mammoth (tobacco variety) requires 12 hours of light and cocklebur (Xanthium pensylvanicum) requires 15.05 hours
of light for flowering.
Depending
upon the photoperiodic responses plants are classified as given in Figure
15.24.
i.
Long day
plants: The plants that require long
critical day length for flowering are called long day plants or short night
plants. Example: Pea, Barley and Oats.
ii. Short long day plants: These are long day plants but should be exposed to short day lengths during early period of growth for flowering. Example: Wheat and Rye.
iii. Short day plants: The plants that require a short critical day length for
flowering are called short day plants or long night plants. Example: Tobacco,
Cocklebur, Soybean, Rice and Chrysanthemum.
iv. Long short day plants: These
are actually short-day plants but
they have to be exposed to long days during their early periods of growth for
flowering. Example: Some species of Bryophyllum
and Night jasmine.
v.
Intermediate
day plants: These require
a photoperiod between long day and short day for flowering. Example:
Sugarcane and Coleus.
vi. Day neutral plants: There
are a number of plants which can
flower in all possible photoperiods. They are also called photo neutrals or indeterminate
plants. Example: Potato, Rhododendron, Tomato and Cotton.
An
appropriate photoperiod in 24 hours’ cycle constitutes one inductive cycle.
Plants may require one or more inductive cycles for flowering. The phenomenon
of conversion of leaf primordia into flower primordia under the influence of
suitable inductive cycles is called photoperiodic
induction. Example: Xanthium (SDP) – 1 inductive cycle and Plantago
(LDP) – 25 inductive cycles.
Photoperiodic
stimulus is perceived by the leaves. Floral hormone is synthesised in leaves
and translocated to the apical tip to promote flowering. This can be explained
by a simple experiment on Cocklebur (Xanthium
pensylvanicum), a short day plant. Usually Xanthium will flower under short day conditions. If the plant is
defoliated and kept under short day conditions it will not flower. Flowering
will occur even when all the leaves are removed except one leaf. If a cocklebur
plant is defoliated and kept under long day conditions, it will not flower. If
one of its leaves is exposed to short day condition and rest are in long day
condition, flowering will occur (Figure 15.25).
The
nature of flower producing stimulus has been elusive so far. It is believed by
many physiologists that it is a hormone called florigen. The term florigen was coined by Chailakyan (1936) but it is not possible to isolate.
1.
The knowledge of photoperiodism plays an important
role in hybridisation experiments.
2. Photoperiodism is an excellent example of physiological pre-conditioning that is using an external factor to induce physiological changes in the plant.
Phytochrome
is a bluish biliprotein pigment responsible for the perception of light in
photo physiological process. Butler et
al., (1959) named this pigment and it exists in two interconvertible
forms: (i) red light absorbing pigment which is designated as Pr and
(ii) far red light absorbing pigment which is designated as Pfr. The
Pr form absorbs red light in 660nm and changes to Pfr.
The Pfr form absorbs far red light in 730nm and changes to Pr.
The Pr form is biologically inactive and it is stable whereas Pfr
form is biologically active and it is very unstable. In short day plants, Pr
promotes flowering and Pfr inhibits the flowering whereas in long
day plants flowering is promoted by Pfr and inhibited by Pr
form. Pfr is always associated with hydrophobic area of membrane
systems while Pr is found in diffused state in the cytoplasm. The
interconversion of the two forms of phytochrome is mainly involved in flower
induction and also additionally plays a role in seed germination and changes in
membrane conformation.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.