Exercise
4.1
1. Can 30°, 60° and 90° be the angles
of a triangle?
Solution:
Given angles 30°, 60°, 90°
Sum of the angles = 30°+ 60°+ 90° = 180°
The given angles can form a triangle.
2. Can you draw a triangle with 25°,
65° and 80° as angles?
Solution:
Given angles 25°, 65°, 80°
Sum of the angles = 25°+ 65°+ 80° = 170° ≠ 180°
The given angles can not form a triangle.
3.
In each of the following triangles, find the value of x.
Solution:
i) ∠E + ∠F + ∠G = 180°
80° + 55° + x =180°
135° + x =180°
x = 180° – 135° = 45°
x = 45°
ii) ∠M + ∠N + ∠O = 180°
x + 96° + 22° =180°
x + 118° =180°
x =180° – 118o = 62o
x = 62°
iii) ∠X + ∠Y + ∠Z =180°
29° + 90° + 2x + l = 180°
120° + 2x =180°
2x =180° – 120o = 60o
x = 30°
iv) ∠L + ∠J + ∠K = 180°
3x + x +112° = 180°
4x + 112° = 180°
4x = 180° – 112° = 68°
x = 68 / 4 = 17o
x=17°
v) ∠S + ∠R + ∠T = 180°
Side SR = Side RT
So, ∠S = ∠T
∠S = 3x ∴ ∠T = 3x
∠S + ∠R + ∠T = 3x + 3x + 72o =
180o
= 6x + 72o =
180o
= 6x = 180°–72° = 108°
x = 180o /6 = 18°
x = 18°
vi) ∠X + ∠Y + ∠Z = 180o
3x + 2x + 4x = 180o
9x = 180o
X = 108 / 9 = 20o
x = 20°
vii) ∠U + ∠V + ∠T = 180°
90° + 3x –2 + x –4 = 180°
84° + 4x = 180°
4x = 180° – 84o = 96o
x = 96 / 4 = 24o
x = 24o
viii) ∠N + ∠O + ∠P = 180°
x + 31+ 3x –10 + 2x –3 = 180°
6x + 18 = 180°
6x = 180° – 18° = 162°
x = 162/6 = 27o
x = 27o
4. Two line segments and intersect at O. Joining and we get two triangles, ∆AOB and ∆DOC as shown in the figure. Find the ∠ A and ∠ B.
Solution:
From the figure,
In ∆ OCD,
∠COD + ∠OCD + ∠ODC = 180o
∠COD + 30° + 70° = 180o
∠COD + 100o = 180o
∠COD = 180o – 100o = 80°
∠COD = 80°
∠COD = ∠AOB = 80° (Vertically opposite
angles)
In ∆ AOB,
∠OAB + ∠ABO + ∠AOB = 180°
3x + 2x + 80° = 180°
5x = 180° – 80° = 100°
x = 100 / 5 = 20°
x = 20°
∠B = 2x = 2 x 20° = 40°
∠A = 3x = 3 x 20° = 60°
∠A = 60°, ∠B = 40°
5.
Observe the figure and find the value of
∠A+∠N+∠G+∠L+∠E+∠S.
Solution:
From the figure, ∆AGE and ∆SNL are equilateral triangles. So
each angle is 60°.
So, ∠A + ∠N + ∠G + ∠L + ∠E + ∠S = 60° + 60° + 60° + 60° + 60° + 60°
= 360°
6. If the three angles of a triangle
are in the ratio 3 : 5 : 4 , then find them.
Solution:
Sum of the three angles in a triangle = 180°
The ratio of the three angles = 3:5:4
Let the three angles be 3x, 5x, 4x.
Sum of the three angles = 3x,5x,4x =180°
12x =180°
x = 180 / 2 =15°
x = 15°
3x = 3 × 15° = 45°
5x = 5 × l5° = 75°
4x = 4 × 15° = 60°
The three angles are 45°, 75°, 60°
7. In ∆RST , ∠S is 10° greater than ∠R and ∠T is
5° less than ∠S , find
the three angles of the triangle.
Solution:
In ∆ RST
∠S = ∠R + 10°
∠T = ∠S – 5°
= ∠R + 10° – 5°
∠T = ∠R + 5°
Sum ofthe three angles of a triangle = 180°
∠R + ∠S + ∠T = 180°
∠R + ∠R + 10° + ∠R + 5° = 180°
3∠R + 15o = 180°
3∠R = 180° – 15o = 165°
∠R = 165 / 3 = 55°
∠R = 55°
∠S = 55° + 10° = 65°
∠T= 55° + 5 = 60°
The three angles are 55°, 65°, 60°
8. In ∆ABC , if ∠B is 3 times ∠A and ∠C is
2 times ∠A , then
find the angles.
Solution:
In ∆ ABC
∠B = 3∠A
∠C = 2∠A
Sum of the three angles = 180°
∠A + ∠B + ∠C = 180°
∠A + 3∠A + 2∠A =180°
6∠A =180°
∠A = 180 / 6 = 30o
∠A= 30°
∠B = 3∠A = 3 × 30° = 90°
∠C = 2∠A = 2 × 30° = 60°
The three angles are 30°, 60°, 90°
9.
In ∆XYZ , if ∠X : ∠Z is 5 : 4 and ∠Y = 72°. Find ∠X and ∠Z
Solution:
In ∆ XYZ , ∠Y = 72°
∠X : ∠Z = 5:4
Let ∠X = 5x, ∠Z = 4x
Sum of the three angles = 180°
5x + 4x + 72° = 180°
9x + 72° = 180°
9x = 180° – 72° = 108°
x = 108o/9 =
12o
∠X = 5x = 5 × 12 = 60°
∠X = 60°
∠Z = 4x = 4 × 12 = 48°
∠Z = 48°
∠X = 60° ; ∠Z = 48°
10. In a right angled triangle ABC,
∠B is
right angle, ∠A is
x + 1 and ∠C is 2x + 5 .
Find ∠A
and ∠C
.
Solution:
In right ∆ ABC,
∠B = 90° ∠A = x + 1
∠A + ∠C = 90° ∠C = 2x + 5
x + l + 2x + 5 = 90°
3x + 6 = 90°
3x = 90 – 6 = 84°
x = 84 / 3 = 28o
x = 28°
∠A = x + 1 = 28° + 1 = 29°
∠C = 2x + 5 = 2 × 28 + 5 = 56 + 5 = 61°
∠A = 29°
∠C = 61°
11. In a right angled triangle MNO,
∠N = 90°,
MO is extended to P. If ∠NOP = 128°,
find the other two angles of ∆MNO .
Solution:
In right ∆ MNO,
∠N =90°
∠NOP =128°
∠MON + ∠NOP = 180° (linear angles)
∠MON + 128° =180°
∠MON = 180°– 128° = 52°
∠MON = 52°
∠MON + ∠NMO = 90°
52° + ∠NMO = 90°
∠NMO = 90° – 52° = 38°
The other two angles,
∠M = 38°
∠O = 52°
12.
Find the value of x in each of the given triangles.
Solution:
i) Exterior angle ∠BCL = Sum of two interior opposite
angles
135° = 65° + ∠BAC
∠BAC = 135° – 65° = 70°
x + ∠BAC = 180° (Linear angles)
x + 70o = 180°
x = 180° – 70° = 110°
x = 110°
ii) From the figure, ∠BAC = ∠XAZ = 8x + 7 (Vertically
opposite angle)
∠BAC = 8x + 7
Exterior angle ∠ACY = Sum of two interior opposite
angles.
120° = ∠BAC + ∠ABC
120° = 8x + 7 + 3x – 8
11x – 1 = 120
11 x = 120 + 1 = 121
x = 121/ 11=11
x = 11°
13. In ∆LMN, MN is extended to O. If ∠MLN = 100 – x, ∠LMN = 2x and ∠LNO = 6x – 5, find the value of x.
Solution:
Exterior angle ∠LNO = Sum of two interior opposite
angles.
6x – 5 = 100 – x + 2x
6x – 5 = 100 + x
6x – x = 100 + 5
5x = 105
x = 105 / 5 = 21°
x = 21°
14.
Using the given figure find the value of x.
Solution:
Exterior angle ∠BEC = Sum of two interior opposite
angles.
x = ∠EDC + ∠ECD
x = 50° + 60° = 110°
x = 110°
x = 110°
15.
Using the diagram find the value of x.
Solution:
Angles of the equilateral triangle.
So, ∠A = ∠B = ∠C = 60°
Exterior angle x = Sum of two interior opposite angles
x = ∠B + ∠C
x = 60° + 60° = 120°
x = 120°
x = 120°
Objective type questions
16. The angles of a triangle are in the
ratio 2:3:4. Then the angles are
(i)
20, 30, 40
(ii)
40, 60, 80
(iii)
80, 20, 80
(iv)
10, 15, 20
Answer : (ii) 40,60,80
17. One
of the angles of a triangle is 65°. If the difference of the other two angles is
45°, then the two angles are
(i) 85°, 40°
(ii)70°, 25°
(iii) 80° , 35°
(iv) 80° , 135°
Answer : (iii) 80°, 35°
18.
In the given figure, AB is parallel to CD. Then the value of b
is
(i) 112°
(ii) 68°
(iii) 102°
(iv) 62°
Answer : (ii) 68°
19.
In the given figure, which of the following statement is true?
(i) x + y + z =
180°
(ii) x + y + z =
a + b + c
(iii) x + y + z
= 2(a + b + c)
(iv) x + y + z = 3(a + b + c)
Answer : (iii) x+y+z = 2(a+b + c)
20.
An exterior angle of a triangle is 70° and two interior opposite angles are equal.
Then measure of each of these angle will be
(i) 110°
(ii) 120°
(iii) 35°
(iv) 60°
Answer : (iii) 35°
21.
In a ∆ABC, AB = AC. The value of x is ____.
(i) 80°
(ii) 100°
(iii) 130°
(iv) 120°
Answer : (ii) 130°
22. If an exterior angle of a triangle
is 115° and one of the interior opposite angles is 35°, then the other two angles
of the triangle are
(i) 45°, 60°
(ii)
65°, 80°
(iii)
65°, 70°
(iv)
115°, 60°
Answer : (ii) 65°, 80°
ANSWERS:
Exercise 4.1
1. yes
2. cannot draw a
triangle
3. (i) 45º (ii) 62º
(iii) 30º (iv) 17º (v) 18º (vi) 20º (vii) 24º (viii) 27º
4. ∠A = 60º; ∠B = 40º
5. 360º
6. 45º,60º,75º
7. 55º,60º,65º
8. 30º,60º,90º
9. ∠X = 60º; ∠Z = 48º
10. ∠A = 29º; ∠C = 61º
11. ∠M = 38º; ∠O = 52º
12.(i) 110º (ii) 11º
13. 21º
14. 110º
15. 120º
Objective type questions
16.(ii) 40º, 60º, 80º
17. (iii) 80º, 35º
18. (ii) 68º
19. (iii) x +
y + z = 2(a + b + c)
20. (iii) 35º
21. (iii) 130º
22. (ii) 65º, 80º
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.