Home | | Basic Electrical and Electronics Engineering | Comparison with other logic families

Chapter: Basic Electrical and Electronics Engineering : Digital Electronics

Comparison with other logic families

TTL devices consume substantially more power than equivalent CMOS devices at rest, but power consumption does not increase with clock speed as rapidly as for CMOS devices. Compared to contemporary ECL circuits, TTL uses less power and has easier design rules but is substantially slower.

Comparison with other logic families

 

TTL devices consume substantially more power than equivalent CMOS devices at rest, but power consumption does not increase with clock speed as rapidly as for CMOS devices. Compared to contemporary ECL circuits, TTL uses less power and has easier design rules but is substantially slower. Designers can combine ECL and TTL devices in the same system to achieve best overall performance and economy, but level-shifting devices are required between the two logic families. TTL is less sensitive to damage from electrostatic discharge than early CMOS devices.

 

Due to the output structure of TTL devices, the output impedance is asymmetrical between the high and low state, making them unsuitable for driving transmission lines. This drawback is usually overcome by buffering the outputs with special line-driver devices where signals need to be sent through cables. ECL, by virtue of its symmetric low-impedance output structure, does not have this drawback.

 

The TTL "totem-pole" output structure often has a momentary overlap when both the upper and lower transistors are conducting, resulting in a substantial pulse of current drawn from the supply. These pulses can couple in unexpected ways between multiple integrated circuit packages, resulting in reduced noise margin and lower performance. TTL systems usually have a decoupling capacitor for every one or two IC packages, so that a current pulse from one chip does not momentarily reduce the supply voltage to the others.

 

Several manufacturers now supply CMOS logic equivalents with TTL-compatible input and output levels, usually bearing part numbers similar to the equivalent TTL component and with the same pinouts. For example, the 74HCT00 series provides many drop-in replacements for bipolar 7400 series parts, but uses CMOS technology.

 

Sub-types

 

Successive generations of technology produced compatible parts with improved power consumption or switching speed, or both. Although vendors uniformly marketed these various product lines as TTL with Schottky diodes, some of the underlying circuits, such as used in the LS family, could rather be considered DTL.

 

Variations of and successors to the basic TTL family, which has a typical gate propagation delay of 10ns and a power dissipation of 10 mW per gate, for a power- delay product (PDP) or switching energy of about 100 pJ, include:

Low-power TTL (L), which traded switching speed (33ns) for a reduction in power consumption (1 mW) (now essentially replaced by CMOS logic)

 High-speed TTL (H), with faster switching than standard TTL (6ns) but significantly higher power dissipation (22 mW)

Schottky TTL (S), introduced in 1969, which used Schottky diode clamps at gate inputs to prevent charge storage and improve switching time. These gates operated more quickly (3ns) but had higher power dissipation (19 mW)

Low-power Schottky TTL (LS) — used the higher resistance values of low-power TTL and the Schottky diodes to provide a good combination of speed (9.5ns) and reduced power consumption (2 mW), and PDP of about 20 pJ. Probably the most common type of TTL, these were used as glue logic in microcomputers, essentially replacing the former H, L, and S sub-families.

Fast (F) and Advanced-Schottky (AS) variants of LS from Fairchild and TI, respectively, circa 1985, with "Miller-killer" circuits to speed up the low-to-high transition. These families achieved PDPs of 10 pJ and 4 pJ, respectively, the lowest of all the TTL families.

Most manufacturers offer commercial and extended temperature ranges: for example Texas Instruments 7400 series parts are rated from 0 to 70°C, and 5400 series devices over the military-specification temperature range of −55 to +125°C.

Radiation-hardened devices are offered for space applications

Special quality levels and high-reliability parts are available for military and aerospace applications.

Low-voltage TTL (LVTTL) for 3.3-volt power supplies and memory interfacing.

Applications

 

Before the advent of VLSI devices, TTL integrated circuits were a standard method of construction for the processors of mini-computer and mainframe processors; such as the DEC VAX and Data General Eclipse, and for equipment such as machine tool numerical controls, printers and video display terminals. As microprocessors became more functional, TTL devices became important for "glue logic" applications, such as fast bus drivers on a motherboard, which tie together the function blocks realized in VLSI elements.

 

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
Basic Electrical and Electronics Engineering : Digital Electronics : Comparison with other logic families |


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.