Home | | Database Management Systems | | FUNDAMENTALS OF Database Systems | | Database Management Systems | Disk Storage, Basic File Structures, and Hashing

Chapter: Fundamentals of Database Systems - File Structures, Indexing, and Hashing - Disk Storage, Basic File Structures, and Hashing

| Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail |

Disk Storage, Basic File Structures, and Hashing

1. Memory Hierarchies and Storage Devices 2. Storage of Databases

PART 7 

File Structures, Indexing, and Hashing

chapter 17

Disk Storage, Basic File Structures, and Hashing

 

Databases are stored physically as files of records, which are typically stored on magnetic disks. This chapter and the next deal with the organization of databases in storage and the tech niques for accessing them efficiently using various algorithms, some of which require auxiliary data structures called indexes. These structures are often referred to as physical database file structures, and are at the physical level of the three-schema architecture described in Chapter 2. We start in Section 17.1 by introducing the concepts of computer storage hierarchies and how they are used in database systems. Section 17.2 is devoted to a description of magnetic disk storage devices and their characteristics, and we also briefly describe magnetic tape storage devices. After discussing different storage technologies, we turn our attention to the methods for physically organizing data on disks. Section 17.3 covers the technique of double buffering, which is used to speed retrieval of multiple disk blocks. In Section we discuss various ways of formatting and storing file records on disk. Section  discusses the various types of operations that are typically applied to file records. We present three primary methods for organizing file records on disk: unordered records, in Section 17.6; ordered records, in Section 17.7; and hashed records, in Section 17.8.

 

Section 17.9 briefly introduces files of mixed records and other primary methods for organizing records, such as B-trees. These are particularly relevant for storage of object-oriented databases, which we discussed in Chapter 11. Section 17.10 describes RAID (Redundant Arrays of Inexpensive (or Independent) Disks)—a data storage system architecture that is commonly used in large organizations for better reliability and performance. Finally, in Section 17.11 we describe three developments in the storage systems area: storage area networks (SAN), network attached storage (NAS), and iSCSI (Internet SCSI—Small Computer System Interface), the latest technology, which makes storage area networks more afford-able without the use of the Fiber Channel infrastructure and hence is getting very wide acceptance in industry. Section 17.12 summarizes the chapter. In Chapter 18 we discuss techniques for creating auxiliary data structures, called indexes, which speed up the search for and retrieval of records. These techniques involve storage of auxiliary data, called index files, in addition to the file records themselves.

 

Chapters 17 and 18 may be browsed through or even omitted by readers who have already studied file organizations and indexing in a separate course. The material covered here, in particular Sections 17.1 through 17.8, is necessary for understand-ing Chapters 19 and 20, which deal with query processing and optimization, and database tuning for improving performance of queries.

 

Introduction

 

The collection of data that makes up a computerized database must be stored phys-ically on some computer storage medium. The DBMS software can then retrieve, update, and process this data as needed. Computer storage media form a storage hierarchy that includes two main categories:

 

        Primary storage. This category includes storage media that can be operated on directly by the computer’s central processing unit (CPU), such as the com-puter’s main memory and smaller but faster cache memories. Primary stor-age usually provides fast access to data but is of limited storage capacity. Although main memory capacities have been growing rapidly in recent years, they are still more expensive and have less storage capacity than sec-ondary and tertiary storage devices.

 

        Secondary and tertiary storage. This category includes magnetic disks, optical disks (CD-ROMs, DVDs, and other similar storage media), and tapes. Hard-disk drives are classified as secondary storage, whereas removable media such as optical disks and tapes are considered tertiary storage. These devices usually have a larger capacity, cost less, and provide slower access to data than do primary storage devices. Data in secondary or tertiary storage cannot be processed directly by the CPU; first it must be copied into primary storage and then processed by the CPU.

 

We first give an overview of the various storage devices used for primary and secondary storage in Section 17.1.1 and then discuss how databases are typically handled in the storage hierarchy in Section 17.1.2.

 

1. Memory Hierarchies and Storage Devices

 

In a modern computer system, data resides and is transported throughout a hierarchy of storage media. The highest-speed memory is the most expensive and is there-fore available with the least capacity. The lowest-speed memory is offline tape storage, which is essentially available in indefinite storage capacity.

At the primary storage level, the memory hierarchy includes at the most expensive end, cache memory, which is a static RAM (Random Access Memory). Cache memory is typically used by the CPU to speed up execution of program instructions using techniques such as prefetching and pipelining. The next level of primary stor-age is DRAM (Dynamic RAM), which provides the main work area for the CPU for keeping program instructions and data. It is popularly called main memory. The advantage of DRAM is its low cost, which continues to decrease; the drawback is its volatility and lower speed compared with static RAM. At the secondary and tertiary storage level, the hierarchy includes magnetic disks, as well as mass storage in the form of CD-ROM (Compact Disk–Read-Only Memory) and DVD (Digital Video Disk or Digital Versatile Disk) devices, and finally tapes at the least expensive end of the hierarchy. The storage capacity is measured in kilobytes (Kbyte or 1000 bytes), megabytes (MB or 1 million bytes), gigabytes (GB or 1 billion bytes), and even terabytes (1000 GB). The word petabyte (1000 terabytes or 10**15 bytes) is now becoming relevant in the context of very large repositories of data in physics, astronomy, earth sciences, and other scientific applications.

 

Programs reside and execute in DRAM. Generally, large permanent databases reside on secondary storage, (magnetic disks), and portions of the database are read into and written from buffers in main memory as needed. Nowadays, personal computers and workstations have large main memories of hundreds of megabytes of RAM and DRAM, so it is becoming possible to load a large part of the database into main memory. Eight to 16 GB of main memory on a single server is becoming common-place. In some cases, entire databases can be kept in main memory (with a backup copy on magnetic disk), leading to main memory databases; these are particularly useful in real-time applications that require extremely fast response times. An example is telephone switching applications, which store databases that contain routing and line information in main memory.

 

Between DRAM and magnetic disk storage, another form of memory, flash memory, is becoming common, particularly because it is nonvolatile. Flash memories are high-density, high-performance memories using EEPROM (Electrically Erasable Programmable Read-Only Memory) technology. The advantage of flash memory is the fast access speed; the disadvantage is that an entire block must be erased and written over simultaneously. Flash memory cards are appearing as the data storage medium in appliances with capacities ranging from a few megabytes to a few gigabytes. These are appearing in cameras, MP3 players, cell phones, PDAs, and so on. USB (Universal Serial Bus) flash drives have become the most portable medium for carrying data between personal computers; they have a flash memory storage device integrated with a USB interface.

 

CD-ROM (Compact Disk – Read Only Memory) disks store data optically and are read by a laser. CD-ROMs contain prerecorded data that cannot be overwritten. WORM (Write-Once-Read-Many) disks are a form of optical storage used for archiving data; they allow data to be written once and read any number of times without the possibility of erasing. They hold about half a gigabyte of data per disk and last much longer than magnetic disks. Optical jukebox memories use an array of CD-ROM platters, which are loaded onto drives on demand. Although optical jukeboxes have capacities in the hundreds of gigabytes, their retrieval times are in the hundreds of milliseconds, quite a bit slower than magnetic disks. This type of storage is continuing to decline because of the rapid decrease in cost and increase in capacities of magnetic disks. The DVD is another standard for optical disks allowing 4.5 to 15 GB of storage per disk. Most personal computer disk drives now read CD-ROM and DVD disks. Typically, drives are CD-R (Compact Disk Recordable) that can create CD-ROMs and audio CDs (Compact Disks), as well as record on DVDs.

 

Finally, magnetic tapes are used for archiving and backup storage of data. Tape jukeboxes—which contain a bank of tapes that are catalogued and can be automat-ically loaded onto tape drives—are becoming popular as tertiary storage to hold terabytes of data. For example, NASA’s EOS (Earth Observation Satellite) system stores archived databases in this fashion.

 

Many large organizations are already finding it normal to have terabyte-sized data-bases. The term very large database can no longer be precisely defined because disk storage capacities are on the rise and costs are declining. Very soon the term may be reserved for databases containing tens of terabytes.

 

2. Storage of Databases

 

Databases typically store large amounts of data that must persist over long periods of time, and hence is often referred to as persistent data. Parts of this data are accessed and processed repeatedly during this period. This contrasts with the notion of transient data that persist for only a limited time during program execution. Most databases are stored permanently (or persistently) on magnetic disk secondary storage, for the following reasons:

 

        Generally, databases are too large to fit entirely in main memory.

 

        The circumstances that cause permanent loss of stored data arise less frequently for disk secondary storage than for primary storage. Hence, we refer to disk—and other secondary storage devices—as nonvolatile storage, whereas main memory is often called volatile storage.

 

        The cost of storage per unit of data is an order of magnitude less for disk secondary storage than for primary storage.

 

Some of the newer technologies—such as optical disks, DVDs, and tape juke-boxes—are likely to provide viable alternatives to the use of magnetic disks. In the future, databases may therefore reside at different levels of the memory hierarchy from those described in Section 17.1.1. However, it is anticipated that magnetic disks will continue to be the primary medium of choice for large databases for years to come. Hence, it is important to study and understand the properties and characteristics of magnetic disks and the way data files can be organized on disk in order to design effective databases with acceptable performance.

 

Magnetic tapes are frequently used as a storage medium for backing up databases because storage on tape costs even less than storage on disk. However, access to data on tape is quite slow. Data stored on tapes is offline; that is, some intervention by an operator—or an automatic loading device—to load a tape is needed before the data becomes available. In contrast, disks are online devices that can be accessed directly at any time.

 

The techniques used to store large amounts of structured data on disk are important for database designers, the DBA, and implementers of a DBMS. Database designers and the DBA must know the advantages and disadvantages of each storage technique when they design, implement, and operate a database on a specific DBMS. Usually, the DBMS has several options available for organizing the data. The process of physical database design involves choosing the particular data organization techniques that best suit the given application requirements from among the options. DBMS system implementers must study data organization techniques so that they can implement them efficiently and thus provide the DBA and users of the DBMS with sufficient options.

 

Typical database applications need only a small portion of the database at a time for processing. Whenever a certain portion of the data is needed, it must be located on disk, copied to main memory for processing, and then rewritten to the disk if the data is changed. The data stored on disk is organized as files of records. Each record is a collection of data values that can be interpreted as facts about entities, their attributes, and their relationships. Records should be stored on disk in a manner that makes it possible to locate them efficiently when they are needed.

 

There are several primary file organizations, which determine how the file records are physically placed on the disk, and hence how the records can be accessed. A heap file (or unordered file) places the records on disk in no particular order by appending new records at the end of the file, whereas a sorted file (or sequential file) keeps the records ordered by the value of a particular field (called the sort key). A hashed file uses a hash function applied to a particular field (called the hash key) to determine a record’s placement on disk. Other primary file organizations, such as B-trees, use tree structures. We discuss primary file organizations in Sections 17.6 through 17.9. A secondary organization or auxiliary access structure allows efficient access to file records based on alternate fields than those that have been used for the primary file organization. Most of these exist as indexes and will be discussed in Chapter 18.


Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail


Copyright © 2018-2020 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.