Trigonometric identities
For all real values of θ , we have the following three identities.
(i) sin 2 θ + cos2 θ=1
(ii) 1 + tan2 θ = sec2 θ
(iii) 1 + cot2 θ = cosec2 θ
These identities are termed as three fundamental identities of
trigonometry. We will now prove them as follows.
These identities can also be rewritten as follows.
Though the above identities are true for any angle θ, we will consider the six trigonometric ratios only for 0° < θ < 90°
Example 6.1
Prove that tan 2 θ − sin2 θ = tan 2 θ sin2 θ
Solution
tan 2 θ - sin2 θ = tan2 θ − . cos2 θ
= tan 2 θ(1 − cos 2 θ)
= tan 2 θ sin2 θ
Example 6.2
Prove that
Solution
Example 6.3
Prove that 1 + = cosec θ
Solution
Example 6.4
Prove that sec θ − cos θ = tan θ sin θ
Solution
Example 6.5 Prove that = cosec θ + cot θ
Solution
Example 6.6
Prove that = cot θ
Solution
Prove that sin 2 A cos2 B + cos 2 A sin2 B + cos 2 A cos2 B + sin 2 A sin2 B = 1
sin 2 A cos2 B + cos 2 A sin2 B + cos 2 A cos2 B + sin 2 A sin2 B
= sin 2 A
cos2 B + sin 2 A sin2 B +
cos 2 A sin2 B + cos 2 A
cos2 B
= sin2 A(cos2
B + sin2 B ) + cos2 A(sin2
B + cos 2 B)
= sin 2 A(1)
+ cos2 A(1)
(since sin2 B + cos 2 B = 1)
= sin 2 A
+ cos2 A = 1
Example 6.8
If cos θ + sin θ = √2 cos θ, then prove that cos θ − sin θ =
√2sin θ
Solution
Now, cos θ + sin θ = √2 cos θ
Squaring both sides,
(cos θ + sin θ)2 = (√2 cos θ)2
cos 2 θ + sin2 θ + 2 sin θ cos θ = 2 cos2
θ
2 cos2 θ - cos2 θ - sin2 θ = 2
sin θ cos θ
cos 2 θ - sin2 θ = 2 sin θ cos θ
(cos θ + sin θ)(cos θ − sin θ) =2 sin θ cos θ
Therefore cos θ − sin θ = √2sin θ
Example 6.9
Prove
that (cosec θ − sin θ)(sec θ − cos θ)(tan θ + cot θ) =1
Solution
(cosec θ − sin θ)(sec θ − cos θ)(tan θ + cot θ)
Example 6.10
Prove that
Solution
Example 6.11
If cosec θ +cot θ = P , then prove that cos θ =
Given cosec θ +cot θ =
P ...(1)
cosec2 θ - cot2 θ =1 (identity)
cosec θ - cot θ = 1 / (cosec θ + cot θ)
Prove that tan2A − tan2 B =
Example 6.13
Solution
Example 6.14 Prove that
Solution
Example 6.15
Solution
Example 6.16
Prove that = sin 2 A cos2 A
Solution
Example 6.17
Solution
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.