Trigonometric Ratios for Complementary Angles
Recall that
two acute angles are said to be complementary if the sum of their measures is equal
to 90°.
What can
we say about the acute angles of a right-angled triangle?
In a right
angled triangle the sum of the two acute angles is equal to 90°. So, the two acute
angles of a right angled triangle are always complementary to each other.
In the above
figure 6.13, the triangle is right-angled at B. Therefore, if ∠C is θ , then ∠A = 90° − θ .
Example 6.7
Express (i) sin74° in terms of cosine (ii) tan12° in
terms of cotangent (iii) cosec39° in terms of secant
Solution
(i) sin74° = sin(90º − 16º) (since, 90º − 16º = 74º )
RHS is of the form sin(90º − θ) = cos θ
Therefore sin74° = cos16º
(ii) tan12° = tan(90º − 78º) (since, 12º = 90º − 78º)
RHS is of the form tan(90º − θ) = cot θ
Therefore tan12° = cot 78º
(iii) cosec39° = cosec(90º − 51º ) (since 39º = 90º − 51° )
RHS is of the form cosec(90º − θ) sec θ
Therefore cosec39° = sec51°
Example 6.8
Evaluate: (i) sin 49° / cos 41° (ii) sec63° / cosec 27°
Solution
(i) sin 49° / cos 41°
sin 49° = sin(90° − 41° ) = cos 41° , since 49° + 41°
= 90° (complementary),
Hence on substituting sin49° = cos 41°
we get, cos41°/cos41° = 1
(ii) sec63° / cosec 27°
sec 63° sec(90° − 27° ) = cosec 27°, here 63° and 27°
are complementary angles.
we have sec63° / cosec 27° = cosec 27° / cosec 27° =
1
Example 6.9
Find the values of (i) tan 7° tan 23° tan 60° tan 67°
tan 83°
(ii)
Solution
(i) tan 7° tan 23° tan 60° tan 67° tan 83°
= tan 7° tan 83° tan 23° tan 67° tan 60° (Grouping complementary angles)
= tan 7° tan(90°-7° )tan 23° tan(90° − 23°)tan 60°
= (tan 7° . cot 7° )(tan 23° . cot 23° )tan 60°
= (1) × (1) × tan 60°
= tan60° = √3
(ii)
= 1 + 1 – 1 = 1
(i) If cosec
A
= sec 34°, then find A (ii) If tan B = cot 47°, then find B.
(i) We know
that cosec A = sec(90° − A)
sec(90º −
A) = sec(34º)
90º - A = 34º
We get A= 90° − 34°
A = 56º
(ii) We know that tan B cot(90º - B)
cot(90º - B) = cot 47º
90º - B = 47º
We get B = 90° − 47°
B = 43º
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.