Home | | Engineering Metallurgy | Polymer synthesis

Chapter: Mechanical : Engineering materials and metallurgy : Non-Metallic Materials

Polymer synthesis

Polymerization is the process of combining many small molecules known as monomers into a covalently bonded chain. During the polymerization process, some chemical groups may be lost from each monomer.

Polymer synthesis


 

The repeating unit of the polymer polypropylene.

Polymerization is the process of combining many small molecules known as monomers into a covalently bonded chain. During the polymerization process, some chemical groups may be lost from each monomer. This is the case, for example, in the polymerization of PET polyester. The monomers are terephthalic acid (HOOC-C6H4- COOH) and ethylene glycol (HO-CH2-CH2-OH) but the repeating unit is -OC-C6H4- COO-CH2-CH2-O-, which corresponds to the combination of the two monomers with the loss of two water molecules. The distinct piece of each monomer that is incorporated into the polymer is known as a repeat unit or monomer residue.

Laboratory synthesis

Laboratory synthetic methods are generally divided into two categories, step-growth polymerization and chain-growth polymerization. The essential difference between the two is that in chain growth polymerization, monomers are added to the chain one at a time only,whereas in step-growth polymerization chains of monomers may combine with one another directly. However, some newer methods such as plasma polymerization do not fit neatly into either category. Synthetic polymerization reactions may be carried out with or without a catalyst. Laboratory synthesis of biopolymers, especially of proteins, is an area of intensive research.

 

Biological synthesis


There are three main classes of biopolymers: polysaccharides, polypeptides, and polynucleotides. In living cells, they may be synthesized by enzyme-mediated processes, such as the formation of DNA catalyzed by DNA polymerase. The synthesis of proteins involves multiple enzyme-mediated processes to transcribe genetic information from the DNA to RNA and subsequently translate that information to synthesize the specified protein from amino acids. The protein may be modified further following translation in order to provide appropriate structure and functioning.


Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
Mechanical : Engineering materials and metallurgy : Non-Metallic Materials : Polymer synthesis |


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.