Home | | Maths 10th Std | Construction of tangents to a circle

# Construction of tangents to a circle

Now let us discuss how to draw (i) a tangent to a circle using its centre (ii) a tangent to a circle using alternate segment theorem (iii) pair of tangents from an external point

### Construction

Construction of tangents to a circle

Now let us discuss how to draw

(i) a tangent to a circle using its centre

(ii) a tangent to a circle using alternate segment theorem

(iii) pair of tangents from an external point

### Example 4.29

Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.

### Solution

Given, radius r = 3 cm ### Construction

Step 1: Draw a circle with centre at of radius 3 cm.

Step 2: Take a point P on the circle. Join OP.

Step 3: Draw  perpendicular  line TT’  to  OP which  passes through P.

Step 4: TT  is the required tangent. ### Example 4.30

Draw a circle of radius 4 cm. At a point L on it draw a tangent to the circle using the alternate segment.

### Solution ### Construction

Step 1 : With O as the centre, draw a circle of radius 4 cm.

Step 2: Take a point L on the circle. Through L draw any chord LM.

Step 3: Take a point M distinct from and N on the circle, so that Land N are  in anti-clockwise direction. Join  LN and NM.

Step 4: Through L draw a tangent TT ’ such that TLM = MNL.

Step 5: TT ‘ is the required tangent. ### Example 4.31

Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

### Solution

Given, diameter (d) = 6 cm, we find radius (r) = 6/2 = 3 cm ### Construction

Step 1: With centre at O, draw a circle of radius 3 cm.

Step 2: Draw a line OP of length 8 cm.

Step 3: Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4: With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.

Step5: Join AP and BPAP and BP are the required tangents. Thus length of the tangents are PA = PB = 7.4 cm.

Verification : In the right angle triangle OAP , PA2  = OP2 OA2  = 64 – 9 = 55

PA = √55 = 7 4. cm (approximately) .

Tags : Solved Example Problems | Geometry , 10th Mathematics : Geometry
Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
10th Mathematics : Geometry : Construction of tangents to a circle | Solved Example Problems | Geometry

Related Topics