Soil Formation
Soil is formed by the
process of 'Weathering' of rocks, that is, disintegration and decomposition
of rocks
and minerals at or near the earth's surface through the actions of natural
or mechanical and chemical agents into smaller and smaller grains. The factors
of weathering may be atmospheric, such as changes in temperature and pressure;
erosion and transportation by wind, water and glaciers; chemical action such as
crystal growth, oxidation, hydration, carbonation and leaching by water,
especially rainwater, with time. Obviously, soils formed by mechanical
weathering (that is, disintegration of rocks by the action of wind, water and glaciers)
bear a similarity in certain properties to the minerals in the parent rock,
since chemical changes which could destroy their identity do not take place.
It is to be noted that 95% of the earth's crust
consists of igneous rocks, and only the remaining 5% consists of
sedimentary and metamorphic rocks. However, sedimentary rocks are present on
80% of the earth's surface area. Feldspars are the minerals
abundantly present (60%) in igneous rocks. Amphiboles and pyroxenes,
quartz and micas come next in that order. Rocks are altered more by the process
of chemical weathering than by mechanical weathering. In chemical weathering
some minerals disappear partially or fully, and new compounds are formed.
The intensity of weathering
depends upon the presence of water and temperature and the dissolved materials
in water. Carbonic acid and oxygen are the most effective dissolved materials
found in water which cause the weathering of rocks. Chemical weathering has the
maximum intensity in humid and tropical climates.
'Leaching' is the
process whereby water-soluble parts in the soil such as Calcium
Carbonate,
are dissolved and washed out from the soil by rainfall or percolating
subsurface water. 'Laterite'
soil, in which certain areas of Kerala abound, is formed by
leaching. Harder minerals will be more resistant to weathering action, for
example, Quartz present in igneous rocks. But, prolonged chemical action may
affect even such relatively stable minerals,
resulting in the formation of
secondary products of weathering, such as clay minerals-illite, kaolinite
and montmorillonite. 'Clay Mineralogy' has grown into a very complicated
and
broad
subject (Ref:
'Clay Mineralogy' by R.E. Grim).
1 Residual soils
To remain at the original place
·
In Hong Kong areas, the top layer of rock is
decomposed into residual soils due to the warm climate and abundant rainfall .
·
Engineering properties of residual soils are
different with those of transported soils
The knowledge of
"classical" geotechnical engineering is mostly based on behavior of
transported soils. The understanding of residual soils is insufficient in
general
2 Transported soils
To be moved and deposited to other places.
The particle sizes of transported
soils are selected by the transportation agents such as streams, wind, etc.
Interstratifications of silts and clays.
The transported soils can be
categorized based on the mode of transportation and deposition (six types).
·
(1) Glacial soils: formed by transportation
and deposition of glaciers.
·
(2) Alluvial soils: transported by running
water and deposited along streams.
·
(3) Lacustrine soils: formed by deposition
in quiet lakes (e.g. soils in Taipei basin).
·
(4) Marine soils: formed by deposition in
the seas (Hong Kong).
·
(5) Aeolian soils: transported and
deposited by the wind (e.g. soils in the loess plateau, China).
·
(6) Colluvial soils: formed by movement of
soil from its original place by gravity, such as during landslide (Hong Kong).
(from Das, 1998)
1.5
Soil Profile
A deposit of soil material,
resulting from one or more of the geological processes described earlier, is
subjected to further physical and chemical changes which are brought about by
the climate and other factors prevalent subsequently. Vegetation starts to
develop and rainfall begins the processes of leaching and eluviations of the
surface of the soil material.
Gradually, with the passage of
geological time profound changes take place in the character of the soil. These
changes
bring about the development of 'soil profile'. Thus, the
soil profile is a natural succession of zones or strata below the ground
surface and represents the alterations in the original soil material which have
been brought about by weathering processes. It may extend to different depths
at different places and each stratum may have varying thickness.
Generally, three distinct strata
or horizons occur in a natural soil-profile; this number may increase to five
or more in soils which are very old or in which the weathering processes have
been unusually intense. From top to bottom these horizons are designated as the
A-horizon, the B-horizon and the C-horizon. The A-horizon is rich in humus and
organic plant residue. This is usually eluviated and leached; that is, the
ultrafine colloidal material and the soluble mineral salts are washed out of
this horizon by percolating water. It is dark in colour and its thickness may
range from a few centimeters to half a metre. This horizon often exhibits many
undesirable engineering characteristics and is of value only to agricultural
soil scientists.
The B-horizon is sometimes
referred to as the zone of accumulation. The material which has migrated from
the A-horizon by leaching and eluviations gets deposited in this zone. There is
a distinct difference of colour between this zone and the dark top soil of the
A-horizon. This soil is very much chemically active at the surface and contains
unstable fine-grained material. Thus, this is important in highway and airfield
construction work and light structures such as single storey residential
buildings, in which the foundations are located near the ground surface. The
thickness of B-horizon may range from 0.50 to 0.75 m. The material in the
C-horizon is in the same physical and chemical state as it was first deposited
by water, wind or ice in the geological cycle. The thickness of this horizon
may range from a few centimeters to more than 30 m. The upper region of this
horizon is often oxidized to a considerable extent. It is from this horizon
that the bulk of the material is often borrowed for the construction of large
soil structures such as earth dams. Each of these horizons may consist of
sub-horizons with distinctive physical and chemical characteristics and may be
designated as A1, A2, B1, B2, etc. The transition
between horizons and sub-horizons may not be sharp but gradual. At a certain
place, one or more horizons may be missing in the soil profile for special
reasons.
The morphology or form of a soil is expressed by a complete
description of the texture, structure, colour and other characteristics of the
various horizons, and by their thicknesses and depths in the soil profile.
For these and other details the reader may refer ''Soil Engineering'
by M.G.
Spangler.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.