Home | | Optical Communication and Networks | Receiver Configuration

Chapter: Optical Communication and Networking : Fiber Optic Receiver and Measurements

Receiver Configuration

A typical optical receiver is shown in Figure . The three basic stages of the receiver are a photodetector, an amplifier, and an equalizer.

Receiver Configuration

 

ü   A typical optical receiver is shown in Figure 4.4. The three basic stages of the receiver are a photodetector, an amplifier, and an equalizer.


ü   The photo-detector can be either an APD with a mean gain M or a PIN for which M=1.

 

ü   The photodiode has a quantum efficiency h and a capacitance Cd.

 

ü   The detector bias resistor has a resistance Rb which generates a thermal noise current ib(t).



Amplifier Noise Sources:

 

ü   The input noise current source ia(t) arises from the thermal noise of the amplifier input resistance Ra;

 

ü   The noise voltage source ea(t) represents the thermal noise of the amplifier channel.

 

ü   The noise sources are assumed to be Gaussian in statistics, flat in spectrum (which characterizes white noise), and uncorrelated (statistically independent).

 

The Linear Equalizer:

 

ü   The equalizer is normally a linear frequency shaping filter that is used to mitigate the effects of signal distortion and inter symbol interference (ISI).

 

ü   The equalizer accepts the combined frequency response of the transmitter, the fiber, and the receiver, and transforms it into a signal response suitable for the following signal processing electronics.

 

ü   The binary digital pulse train incident on the photo-detector can be described by


ü   Here, P(t) is the received optical power, Tb is the bit period, bn is an amplitude parameter representing the nth message digit, and hp(t) is the received pulse shape.

 

ü   Let the nonnegative photodiode input pulse hp(t) be normalized to have unit area


then bn represents the energy in the nth pulse.

 

ü   The mean output current from the photodiode at time t resulting from the pulse train given previously is


where Ro = hq/hn is the photodiode responsivity.

 

ü   The above current is then amplified and filtered to produce a mean voltage at the output of the equalizer.

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
Optical Communication and Networking : Fiber Optic Receiver and Measurements : Receiver Configuration |


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.