Parseval’s Theorem
Root Mean square value of the function f(x) over an interval (a, b) is defined as
The use of r.m.s value of a periodic function is frequently made in the theory of mechanical vibrations and in electric circuit theory. The r.m.s value is known as the effective value of the function.
Parseval’s Theorem
If f(x) defined in the interval (c, c+2π ), then the Parseval‟s Identity is given by
Example 13
Obtain the Fourier series for f(x)
CHANGE OF INTERVAL
In most of the Engineering applications, we require an expansion of a given function over an interval 2l other than 2p.
Suppose f(x) is a function defined in the interval c< x < c+2l. The Fourier expansion for f(x) in the interval c<x<c+2l is given by
Even and Odd Function
If f(x) is an even function and is defined in the interval ( c, c+2 l ), then
Half Range Series
Sine Series
Cosine series
Example 14
Find the Fourier series expansion for the function
Example 15
Find the Fourier series of periodicity 3 for f(x) = 2x –x2 , in 0 <x <3.
Here 2â„“ = 3.
\ â„“ = 3 / 2.
Exercises
1.Obtain the Fourier series for f(x) = px in 0 < x < 2. 2.Find the Fourier series to represent x2 in the interval (-l, l ). 3.Find a Fourier series in (-2, 2), if
f(x) = 0, -2 < x < 0
= 1, 0 < x < 2.
4.Obtain the Fourier series for
f(x) = 1-x in 0 < x < l
= 0 in l < x < 2 l. Hence deduce that
1- (1/3 ) +(1/5) –(1/7) p/4+& … =
2 2 ) + (1/5 2 2
(1/1 ) + (1/3 ) + p…/8) = (
5.If f(x) = px, 0 < x < 1
= p (2-x), 1 < x < 2,
Show that in the interval (0,2),
6.Obtain the Fourier series for
f(x) = x in 0 < x < 1
= 0 in 1 < x < 2
7.Obtain the Fourier series for
f(x) = (cx /l ) in 0 < x < l
= (c/l ) (2 l - x ) in l < x < 2 l .
8.Obtain the Fourier series for
f(x) = (l + x ), - l < x < 0. = (l - x ), 0 < x < l.
10.Express f(x) = x as a half –range sine series in 0 < x < 2
11.Obtain the half-range sine series for ex in 0 < x < 1.
12.Find the half –range cosine series for the function f(x) = (x-2)2 in the interval 0 < x < 2.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.