MOLECULAR BIOLOGY TECHNIQUES
The central foci of molecular biology are the nucleic acids,
deoxyribonucleic acid (DNA) and the ribonucleic acid (RNA). Nucleic acids
encode the genetic information specifying the primary structure of all proteins
unique to an organism. Together with lipids and extracellular supporting
stroma, they create cel-lular activity and physiological function. Thus,
biological functions can be understood in part by examining the
interrelationships between these key com-ponents. RNA and DNA are composed of
four separate building blocks called nucleotides. Each of the four nucleotides
contains a nucleic acid base (A, ad-enine; G, guanine; T, thymine; C,
cytosine), a deoxyribose sugar moiety and a phosphoester for DNA. For RNA, the
same bases as in DNA are present, except that uridine (U) is substituted for T
and a ribose moiety is present instead of the deoxyribose. The nucleotides are
connected one to another to form a chain-like arrangement, which comprises the
nucleic acid’s sequence. RNA is composed of a single strand whereas DNA is
composed of two paired strands. In order for the paired strands to match up,
they must face each other in the opposite or complementary direction. The
complementary strands of DNA are kept together primarily by the hydrogen bonds
that form between the bases A and T (2 bonds) as well as C and G (3 bonds). It
is this hydrogen bonding between the matched base pairs A and T (or, for RNA, A
and U) as well as C and G that is the foundation of all molecular biological
tests. Although one given base pair match of AT or GC would separate easily,
there is strength in numbers and the more base pair matching, the greater the
number of hydrogen bonds between the two DNA strands and the less likely they
are to separate.
In the hybridization of nucleic acid strands, when two DNA strands
meet, they orient each other in opposite or antiparallel directions to allow
base pair matching to occur. If no base pair matching is present, they go their
separate ways. However, if there is sufficient base pair matching they will
join together of hybridize. The specific term used to describe the degree of
base pair match-ing that determines if the strands stay together is homology.
How much ho-mology is needed for two strands to stay together? Although it is
true “the more, the better,” another important variable is how close the base
pair matches are to one another. Adjacent base pair matches in a sequence will
hold together more strongly than the same number of base pair matches
dis-persed over the DNA sequence. Dispersed base pair matches are typical
unre-lated DNA strands whereas clustered base pair matches are expected for
re-lated complementary DNA molecules. Clearly, if two DNA strands are
com-pletely homologous and have 100% base pair matching then the strands would
tend to remain hybridized under most conditions. Conversely, hybridized strands
with poor homology (e.g., only 10% of base pairs matched) would tend to
dissociate or denature readily under most conditions. Whether hybridized
strands with intermediate homology - where, for example, 50% of the base pairs
matched - would remain hybridized would depend greatly on the reaction
conditions.
Given that hydrogen bonds are the glue that keep two hybridized
strands to-gether and that many chemicals and conditions can affect hydrogen
bonding, a term is needed that describes whether the hybridization reaction
conditions relatively favor or disfavor hydrogen bonding - stringency. Under
low strin-gency conditions, hybridized strands with intermediate homology would
tend to remain hybridized whereas hybridized strands with poor homology would dissociate.
At high stringency conditions, only hybridized strands with strong homology
would tend to remain hybridized.
Another key term, the melting temperature, or commonly abbreviated,
Tm. If one takes two strands of DNA that share homology and
hybridizes them, at any given time some of the strands will remain hybridized
whereas others will have separated. The ratio of hybridized/denatured DNA
strands in the reaction will vary depending on the degree of homology as well
as any condition that may affect hydrogen bonding between matched base pairs
such as formamide con-centration and temperature. The melting temperature is
defined as that tem-perature under the specific reaction conditions where one
half of the hybrid-ized strands are still hybridized and the other half are
denatured.
Two molecular biology-based techniques discussed here are: gene
probe and polymerase chain reaction (PCR).
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.