Home | | Biochemistry | How does the breakdown of glycogen take place?

Chapter: Biochemistry: Storage Mechanisms and Control in Carbohydrate Metabolism

How does the breakdown of glycogen take place?

Glycogen is found primarily in liver and muscle. The release of glycogen stored in the liver is triggered by low levels of glucose in blood.

How does the breakdown of glycogen take place?

Glycogen is found primarily in liver and muscle. The release of glycogen stored in the liver is triggered by low levels of glucose in blood. Liver glycogen breaks down to glucose-6-phosphate, which is hydrolyzed to give glucose. The release of glucose from the liver by this breakdown of glycogen replenishes the supply of glucose in the blood. In muscle, glucose-6-phosphate obtained from glycogen breakdown enters the glycolytic pathway directly rather than being hydrolyzed to glucose and then exported to the bloodstream.

Three reactions play roles in the conversion of glycogen to glucose-6-phosphate. In the first reaction, each glucose residue cleaved from glycogen reacts with phosphate to give glucose-1-phosphate. Note particularly that this cleavage reaction is one of phosphorolysis rather than hydrolysis.


In a second reaction, glucose-1-phosphate isomerizes to give glucose-6-phosphate.


Complete breakdown of glycogen also requires a debranching reaction to hydrolyze the glycosidic bonds of the glucose residues at branch points in the glycogen structure. The enzyme that catalyzes the first of these reactions is glycogen phosphorylase; the second reaction is catalyzed by phosphoglucomutase.

Glycogen phosphorylase

Glycogen + Pi OO3 => Glucose-1-phosphate + Remainder of glycogen

Phosphoglucomutase

Glucose-1-phosphate  => Glucose-6-phosphate


Glycogen phosphorylase cleaves the α(1 - > 4) linkages in glycogen. Complete breakdown requires debranching enzymes that degrade the α(1 - > 6) linkages. Note that no ATP is hydrolyzed in the first reaction. In the glycolytic pathway, we saw another example of phosphorylation of a substrate directly by phosphate without involvement of ATP: the phosphorylation of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate. This is an alternative mode of entry to the glycolytic pathway that “saves” one molecule of ATP for each molecule of glucose because it bypasses the first step in glycolysis. When glycogen rather than glucose is the starting material for glycolysis, there is a net gain of three ATP molecules for each glucose monomer, rather than two ATP molecules, as when glucose itself is the starting point. Thus, glycogen is a more effective energy source than glucose. Of course, there is no “free lunch” in biochemistry and, as we shall see, it takes energy to put the glucoses together into glycogen.

The debranching of glycogen involves the transfer of a “limit branch” of three glucose residues to the end of another branch, where they are subse-quently removed by glycogen phosphorylase. The same glycogen debranching enzyme then hydrolyzes the α(1 - > 6) glycosidic bond of the last glucose residue remaining at the branch point (Figure 18.2). 


When an organism needs energy quickly, glycogen breakdown is important. Muscle tissue can mobilize glycogen more easily than fat and can do so anaerobically. With low-intensity exercise, such as jogging or long-distance running, fat is the preferred fuel, but as the intensity increases, muscle and liver glycogen becomes more important. Some athletes, particularly middle-distance run-ners and cyclists, try to build up their glycogen reserves before a race by eating large amounts of carbohydrates.

 

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
Biochemistry: Storage Mechanisms and Control in Carbohydrate Metabolism : How does the breakdown of glycogen take place? |


Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.