Home | | Database Management Systems | | FUNDAMENTALS OF Database Systems | | Database Management Systems | The Relational Data Model and Relational Database Constraints

Chapter: Fundamentals of Database Systems - The Relational Data Model and SQL - The Relational Data Model and Relational Database Constraints

| Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail |

The Relational Data Model and Relational Database Constraints

This chapter opens Part 2 of the book, which covers relational databases.

Part 2

The Relational Data Model and SQL

 

Chapter 3

The Relational Data Model and Relational Database Constraints

 

This chapter opens Part 2 of the book, which covers relational databases. The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd1970), and it attracted immediate attention due to its simplicity and mathematical foundation. The model uses the concept of a mathematical relation—which looks somewhat like a table of values—as its basic building block, and has its theoretical basis in set theory and first-order predicate logic. In this chapter we discuss the basic characteristics of the model and its constraints.

 

The first commercial implementations of the relational model became available in the early 1980s, such as the SQL/DS system on the MVS operating system by IBM and the Oracle DBMS. Since then, the model has been implemented in a large num-ber of commercial systems. Current popular relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and Rdb (from Oracle), Sybase DBMS (from Sybase) and SQLServer and Access (from Microsoft). In addition, several open source systems, such as MySQL and PostgreSQL, are available.

 

Because of the importance of the relational model, all of Part 2 is devoted to this model and some of the languages associated with it. In Chapters 4 and 5, we describe the SQL query language, which is the standard for commercial relational DBMSs. Chapter 6 covers the operations of the relational algebra and introduces the relational calculus—these are two formal languages associated with the relational model. The relational calculus is considered to be the basis for the SQL language, and the relational algebra is used in the internals of many database implementations for query processing and optimization.

 

 

Other aspects of the relational model are presented in subsequent parts of the book. Chapter 9 relates the relational model data structures to the constructs of the ER and EER models (presented in Chapters 7 and 8), and presents algorithms for designing a relational database schema by mapping a conceptual schema in the ER or EER model into a relational representation. These mappings are incorporated into many database design and CASE tools. Chapters 13 and 14 in Part 5 discuss the programming techniques used to access database systems and the notion of connecting to relational databases via ODBC and JDBC standard protocols. We also introduce the topic of Web database programming in Chapter 14. Chapters 15 and 16 in Part 6 present another aspect of the relational model, namely the formal constraints of functional and multivalued dependencies; these dependencies are used to develop a relational database design theory based on the concept known as normalization.

 

Data models that preceded the relational model include the hierarchical and net-work models. They were proposed in the 1960s and were implemented in early DBMSs during the late 1960s and early 1970s. Because of their historical importance and the existing user base for these DBMSs, we have included a summary of the highlights of these models in Appendices D and E, which are available on this book’s Companion Website at http://www.aw.com/elmasri. These models and systems are now referred to as legacy database systems.

 

In this chapter, we concentrate on describing the basic principles of the relational model of data. We begin by defining the modeling concepts and notation of the relational model in Section 3.1. Section 3.2 is devoted to a discussion of relational constraints that are considered an important part of the relational model and are automatically enforced in most relational DBMSs. Section 3.3 defines the update operations of the relational model, discusses how violations of integrity constraints are handled, and introduces the concept of a transaction. Section 3.4 summarizes the chapter.

 

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail


Copyright © 2018-2020 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.