Monohybrid
cross
Monohybrid inheritance
is the inheritance of a single character i.e. plant height.It involves the
inheritance of two alleles of a single gene. When the F1 generation
was selfed Mendel noticed that 787 of 1064 F2 plants were tall,
while 277 of 1064 were dwarf. The dwarf trait disappeared in the F1
generation only to reappear in the F2 generation. The term genotype
is the genetic constitution of an individual. The term phenotype refers
to the observable characteristic of an organism. In a genetic cross the genotypes
and phenotypes of offspring, resulting from combining gametes during
fertilization can be easily understood with the help of a diagram called
Punnett’s Square named after a British Geneticist Reginald C.Punnett. It is a
graphical representation to calculate the probability of all possible genotypes
of offsprings in a genetic cross.The Law of Dominance and the Law of
Segregation give suitable explanation to Mendel’s monohybrid cross.
Reciprocal cross – In one experiment, the
tall pea plants were pollinated with the pollens from a true-breeding dwarf
plants, the result was all tall plants. When the parental types were reversed,
the pollen from a tall plant was used to pollinate a dwarf pea plant which gave
only tall plants. The result was the same - All tall plants.
Tall x Dwarf and Tall x Dwarf matings are done in both ways which are called reciprocal crosses.The results of the reciprocal crosses are the same. So it was concluded that the trait is not sex dependent. The results of Mendel’s monohybrid crosses were not sex dependent.
The gene for plant
height has two alleles: Tall (T) x Dwarf (t). The phenotypic and genotypic
analysis of the crosses has been shown by Checker board method or by Forkline
method.
Mendel chose two
contrasting traits for each character. So it seemed logical that two distinct
factors exist. In F1 the recessive trait and its factors do not
disappear and they are hidden or masked only to reappear in ¼ of the F2
generation. He concluded that tall and dwarf alleles of F1
heterozygote segregate randomly into gametes. Mendel got 3:1 ratio in F2
between the dominant and recessive trait. He was the first scientist to use
this type of quantitative analysis in a biological experiment. Mendel’s data is
concerned with the proportions of offspring.
Mendel’s analytical
approach is truly an outstanding scientific achievement. His meticulous work
and precisely executed breeding experiments proposed that discrete particulate
units of heredity are present and they are transmitted from one generation to
the other. Now they are called as genes. Mendel’s experiments were well planned
to determine the relationships which govern hereditary traits. This rationale
is called an empirical approach. Laws that were arrived from an empirical
approach is known as empirical laws.
Test cross is crossing
an individual of unknown genotype with a homozygous recessive.
In Mendel’s monohybrid
cross all the plants are tall in F1 generation. In F2
tall and dwarf plants were in the ratio of 3:1.Mendel self pollinated dwarf F2
plants and got dwarf plants in F3 and F4 generations. So
he concluded that the genotype of dwarf was homozygous (tt). The genotypes of
tall plants TT or Tt from F1and F2 cannot be predicted.
But how we can tell if a tall plant is homozygous or heterozygous? To determine
the genotype of a tall plant Mendel crossed the plants from F2 with
the homozygous recessive dwarf plant. This he called a test cross. The
progenies of the test cross can be easily analysed to predict the genotype of
the plant or the test organism. Thus in a typical test cross an organism (pea
plants) showing dominant phenotype (whose genotype is to be determined) is
crossed with the recessive parent instead of self crossing. Test cross is used
to identify whether an individual is homozygous or heterozygous for dominant
character.
If heterozygous tall
test cross
If homozygous tall test
cross
·
Back cross is a cross of F1 hybrid with any one of the
parental genotypes. The back cross is of two types; they are dominant back
cross and recessive back cross.
·
It involves the cross between the F1 offspring with
either of the two parents.
·
When the F1offsprings are crossed with the dominant
parents all the F2 develop dominant character and no recessive
individuals are obtained in the progeny.
·
If the F1 hybrid is crossed with the recessive parent
individuals of both the phenotypes appear in equal proportion and this cross is
specified as test cross.
·
The recessive back cross helps to identify the heterozygosity of
the hybrid.
It is a genetic cross
which involves individuals differing in two characters. Dihybrid inheritance is
the inheritance of two separate genes each with two alleles.
Law of Independent
Assortment – When two pairs of traits are combined in a hybrid,
segregation of one pair of characters is independent to the other pair of
characters. Genes that are located in different chromosomes assort
independently during meiosis. Many possible combinations of factors can occur
in the gametes.
Independent assortment
leads to genetic diversity. If an individual produces genetically dissimilar
gametes it is the consequence of independent assortment. Through independent
assortment, the maternal and paternal members of all pairs were distributed to
gametes, so all possible chromosomal combinations were produced leading to
genetic variation. In sexually reproducing plants / organisms, due to
independent assortment, genetic variation takes place which is important in the
process of evolution. The Law of Segregation is concerned with alleles of one
gene but the Law of Independent Assortment deals with the relationship between
genes.
The crossing of two
plants differing in two pairs of contrasting traits is called dihybrid cross.
In dihybrid cross, two characters (colour and shape) are considered at a time.
Mendel considered the seed shape (round and wrinkled) and cotyledon colour
(yellow & green) as the two characters. In seed shape round (R) is dominant
over wrinkled (r) ; in cotyledon colour yellow (Y) is dominant over green (y).
Hence the pure breeding round yellow parent is represented by the genotype RRYY
and the pure breeding green wrinkled parent is represented by the genotype
rryy. During gamete formation the paired genes of a character assort out
independently of the other pair. During the F1 x F1
fertilization each zygote with an equal probability receives one of the four
combinations from each parent. The resultant gametes thus will be genetically
different and they are of the following four types:
1) Yellow round (YR) - 9/16
2) Yellow wrinkled (Yr) - 3/16
3) Green round (yR) - 3/16
4) Green wrinkled (yr) - 1/16
These four types of
gametes of F1 dihybrids unite randomly in the process of
fertilization and produce sixteen types of individuals in F2 in the
ratio of 9:3:3:1 as shown in the figure. Mendel’s 9:3:3:1 dihybrid ratio is an
ideal ratio based on the probability including segregation, independent
assortment and random fertilization. In sexually reproducing organism plants
from the garden peas to human beings, Mendel’s findings laid the foundation for
understanding inheritance and revolutionized the field of biology. The dihybrid
cross and its result led Mendel to propose a second set of generalisations that
we called Mendel's Law of independent assortment.
The protein called
starch branching enzyme (SBEI) is encoded by the wild-type allele of the gene
(RR) which is dominant. When the seed matures, this enzyme SBEI catalyzes the
formation of highly branched starch molecules. Normal gene (R) has become
interrupted by the insertion of extra piece of DNA (0.8 kb) into the gene,
resulting in r allele. In the homozygous mutant form of the gene (rr) which is
recessive, the activity of the enzyme SBEI is lost resulting in wrinkled peas.
The wrinkled seed accumulates more sucrose and high water content. Hence the
osmotic pressure inside the seed rises. As a result, the seed absorbs more
water and when it matures it loses water as it dries. So it becomes wrinkled at
maturation. When the seed has atleast one copy of normal dominant gene
heterozygous, the dominant allele helps to synthesize starch, amylopectin an
insoluble carbohydrate, with the osmotic balance which minimises the loss of
water resulting in smooth structured round seed.
The wrinkled gene make
Mendel’s
peas wrinkled
The trihybrid cross
demonstrates that Mendel’s laws are applicable to the inheritance of multiple
traits. Mendel Laws of segregation and independent assortment are also
applicable to three pairs of contrasting characteristic traits called trihybrid
cross.
A cross between
homozygous parents that differ in three gene pairs (i.e. producing trihybrids)
is called trihybrid cross. A self fertilizing trihybrid plant forms 8 different
gametes and 64 different zygotes. In this a combination of three single pair
crosses operating together. The three contrasting characters of a trihybrid
cross are
Apart from monohybrid,
dihybrid and trihybrid crosses, there are exceptions to Mendelian principles,
i.e. the occurrence of different phenotypic ratios. The more complex patterns
of inheritance are the extensions of Mendelian Genetics. There are examples
where phenotype of the organism is the result of the interactions among genes.
Gene interaction – A single phenotype is
controlled by more than one set of genes, each of which has two or more
alleles. This phenomenon is called Gene Interaction. Many characteristics of
the organism including structural and chemical which constitute the phenotype
are the result of interaction between two or more genes.
Mendelian experiments
prove that a single gene controls one character. But in the post Mendelian
findings, various exception have been noticed, in which different types of
interactions are possible between the genes. This gene interaction concept was
introduced and explained by W. Bateson. This concept is otherwise known as
Factor hypothesis or Bateson’s factor hypothesis. According to Bateson’s factor
hypothesis, the gene interactions can be classified as
·
Intragenic gene interactions or Intra allelic or allelic
interactions
·
Intergenic gene interactions or inter allelic or non-allelic
interactions
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.