Home | | Digital Electronics | Hybrid Memory Types

Chapter: Digital Electronics : Memory Devices

Hybrid Memory Types

As memory technology has matured in recent years, the line between RAM and ROM devices has blurred.

Hybrid Types:


As memory technology has matured in recent years, the line between RAM and ROM devices has blurred. There are now several types of memory that combine the best features of both. These devices do not belong to either group and can be collectively referred to as hybrid memory devices. Hybrid memories can be read and written as desired, like RAM, but maintain their contents without electrical power, just like ROM. Write cycles to hybrid memories are similar to RAM, but they take significantly longer than writes to a RAM, so you wouldn't want to use this type for your main system memory. Two of the hybrid devices, EEPROM and flash, are descendants of ROM devices; the third, NVRAM, is a modified version of SRAM.


An electrically-erasable-and-programmable ROM (EEPROM) is internally similar to an EPROM, but with the erase operation accomplished electrically. Additionaly, a single byte within an EEPROM can be erased and rewritten. Once written, the new data will remain in the device foreveror at least until it is electrically erased. One tradeoff for this improved functionality is higher cost; another is that typically EEPROM is good for 10,000 to 100,000 write cycles.


EEPROMs are available in a standard (address and data bus) parallel interface as well as a serial interface. In many designs, the Inter-IC (I2C) or Serial Peripheral Interface (SPI) buses are used to communicate with serial EEPROM devices. We'll take a look at the I2C and SPI buses in Flash is the most important recent advancement in memory technology. It combines all the best features of the memory devices described thus far. Flash memory devices are high-density, low-cost, nonvolatile, fast (to read, but not to write), and electrically reprogrammable. These advantages are overwhelming, and the use of flash memory has increased dramatically in embedded systems as a direct result.


Erasing and writing data to a flash memory requires a specific sequence of writes using certain data values. From a software viewpoint, flash and EEPROM technologies are very similar. The major difference is that flash devices can be erased only one sector at a time, not byte by byte. Typical sector sizes range from 8 KB to 64 KB. Despite this disadvantage, flash is much more popular than EEPROM and is rapidly displacing many of the ROM devices as well.


The third member of the hybrid memory class is nonvolatile RAM (NVRAM). Nonvolatility is also a characteristic of the ROM and hybrid memories discussed earlier. However, an NVRAM is physically very different from those devices. An NVRAM is usually just an SRAM with a battery backup. When the power is on, the NVRAM operates just like any other SRAM. But when the power is off, the NVRAM draws just enough electrical power from the battery to retain its current contents. NVRAM is sometimes found in embedded systems to store system-critical information. Incidentally, the "CMOS" in an IBM-compatible PC was historically an NVRAM.


Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
Digital Electronics : Memory Devices : Hybrid Memory Types |

Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.