Part of a proposed suite of technologies to enable a fully morphing seamless wing, this effort focuses on tailoring composite materials to enhance structural response and generate out-of-plane deflections using in-plane forces. Composite structures employ embedded fibers in different directions to increase strength. This research seeks to investigate the use of tailored composites in these types of applications.
Work to date: An analytical feasibility study completed in 2013 determined that in-plane loading can generate significant out-of-plane displacement, effectively yielding wing twist. Also determined was the degree of structural interaction of stiffeners and how to mitigate the suppression of structural response.
Looking ahead: Future work will concentrate on enabling continuous outer mold line structures that can change shape. This revolutionary new approach for aircraft design will improve performance and fuel efficiency in numerous ways, as seamless wings would reduce drag and streamline and simplify an airplane's maneuverability.
Benefits
Economical: Increases fuel efficiency by reducing drag
Robust: Features a simpler wing design without control surfaces that is easy to maintain and less likely to need repair
Applications
Commercial aircraft
General aviation aircraft Military transport aircraft
Armstrong engineers are pioneering new research in aircraft design and modeling. Researchers are experimenting with revolutionary hyperelastic wing control technologies that can reduce weight, improve aircraft aerodynamic efficiency, and suppress flutter. Other cutting-edge research involves techniques, models, and analysis tools for flutter suppression and gust-load allevia-tion.Flight projects at Armstrong rely on high-performance aircraft that can support research on lightweight structures and advance control technologies for future efficient, environmentally friendly transport aircraft. This work has applicability beyond flight safety and design optimization.Armstrong's R&D capabilities in this area also can be applied to other vehicles, such as supersonic transports, large space structures, and hypersonic vehicles.
Related Topics
Privacy Policy, Terms and Conditions, DMCA Policy and Compliant
Copyright © 2018-2023 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.