Home | | Introduction to Botany | Photosynthesis: C4 Pathway

Chapter: Introduction to Botany: Photosynthesis

| Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail |

Photosynthesis: C4 Pathway

Rubisco is the enzyme of extreme importance since it starts the assimilation of carbon dioxide. Unfortunately, Rubisco is “two-faced” since it also catalyzes photorespiration.

C4 Pathway

 

Rubisco is the enzyme of extreme importance since it starts the assimilation of carbon dioxide. Unfortunately, Rubisco is “two-faced” since it also catalyzes photorespiration (Fig. 2.9). Photorespiration means that plants take oxygen instead of carbon dioxide. Rubisco catalyzes photorespiration if there is a high concentration of oxygen (which usually is a result of intense light stage). Rubisco oxygenates C5 (RuBP) which turns into PGA and PGAL, becoming glycolate. This glycolate is returned to the Calvin cycle when the cell uses peroxisomes and mi-tochondria, and spends ATP. The process of photorespiration wastes C5 and ATP which could be more useful to the plant in other ways.


If concentration of CO2 is high enough, assimilation will overcome photores-piration. Consequently, to minimize the amount of photorespiration and save their C5 and ATP, plants employ Le Chatelier’s principle (“Equilibrium Law”) and increase concentration of carbon dioxide. They do this by temporarily bond-ing carbon dioxide with PEP (C3) using carboxylase enzyme; this results in C4 molecules, different organic acids (like malate, malic acid) with four carbons in the skeleton. When plant needs it, that C4 splits into pyruvate (C3) plus carbon dioxide, and the release of that carbon dioxide will increase its concentration. On the final step, pyruvate plus ATP react to restore PEP; recovery of PEP does cost ATP. This entire process is called the “C4pathway” (Fig. 2.10).


 

Plants that use the C4 pathway waste ATP in their effort to recover PEP, but they still outperform photorespiring C3-plants when there is an intensive light and/orhigh temperature and consequently, high concentration of oxygen. This is why inthe tropical climate, C4-crops are preferable.

 

Two groups of plants use the C4 pathway. Many desert or dryland plants are CAM-plants which drive the C4 pathway at night. They make a temporal sepa-ration between the accumulation of carbon dioxide and photosynthesis. CAM-plants make up seven percent of plant diversity, and have 17,000 different species (for example, pineapple (Ananas), cacti, Cactaceae; jade plant, Crassula and their relatives).

 

“Classic” C4 plants drive C4 pathway in leaf mesophyll cells whereas their C3 is located in so-called bundle sheath cells. This is a spatial, rather than tem-poral separation. These C4-plants make up three percent of plant biodiversity and have more than 7,000 different species (for example, corn, Zea; sorghum, Sorghum and their relatives).

 

In all, both variants of C4 pathway relate with concentration of carbon dioxide, spatial or temporal (Fig. 2.11). Both are called “carbon-concentrated mecha-nisms”, or CCM.

There are plants which able to drive both C3 and C4 pathways (like authograph tree, Clusia), and plants having both “classic” C4 and CAM variants (like Portu-lacaria).



 

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail


Copyright © 2018-2020 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.