Home | | Engineering Geology | Important Metamorphic Rocks

Chapter: Civil : Engineering Geology : Petrology

Important Metamorphic Rocks

Slate is an extremely fine-grained metamorphic rock characterized by a slate cleavage by virtue of which it can be readily split into thin sheets having parallel smooth surfaces.





     Slate is an extremely fine-grained metamorphic rock characterized by a slate cleavage by virtue of which it can be readily split into thin sheets having parallel smooth surfaces.


       The slaty cleavage is due to parallel arrangement of platy and flaky minerals of


the slate under the dominant stresses operating during the process of metamorphism.




Mineralogically, slate is made up of very fine flakes of mica, chlorite and microscopic grains of quartz, felspar, oxides of iron and many other minerals, all of which cannot be easily identified even under microscope because of their fine grain size.




       Slate is a product of low-grad regional metamorphism of argillaceous rock: like clays and shales.


     When state is subjected to further action of dynamothermal metamorphism, recrystallisation leads to the development in number and size of some minerals, especially micas.


         Such metamorphic rocks with conspicuous micaceous constituents and  general


slaty appearance are termed PHYLLITES. Uses.


Slate is used locally (where available) for construction purpose as a roofing and paving material only.




Schists are megascopically crystalline foliated metamorphic rocks characterised by a typical schistose structure.


The constituent flaky and platy minerals are mostly arranged in parallel or sub parallel layers or bands.


Texture and Structure


          Most varieties are coarsely crystalline in texture and exhibit a typical schistose structure.


     Quite a few types show lineation and porphyroblastic fabric.



     Platy and rod-like acicular minerals form the bulk of most of the schists.


     Micas (both muscovite and biotite), chlorite, hornblende, tremolite, actinolite 'and kyanite are quite common constituents of most of the schists

     Quartz and felspars are comparatively rare but not altogether absent.


Porphyroblasts of granular minerals like staurolite, garnet and andalucite make their appearance in many schists.



     Specific names are given to different types of schists on the basis of predominance of anyone or more minerals.


     Thus some commonly found schists are: muscovite schists, biotite schists, sericite- schist, tourmaline- schist etc.


     Sometimes schists are grouped into two categories on the basis of degree of metamorphism as indicated by the presence of index minerals:

a) Low-grade schists

     Formed under conditions of regional metamorphism at low temperature.


     These are rich in minerals like albite, muscovite and chlorite that are unstable at high temperature.


     Examples Mica-schist, chlorite-schist and talc-schist are a few from this group.


b) High-grade schists


     These are formed under conditions of regional metamorphism and are rich in minerals that are stable at high temperatures such as andalusite, cordierite, gamet, staurolite and sillimanite etc.

     Gamet-schists, cordierite-schists and sta1'rolite-schists are common examples.




     Slates and Schists are generally the product of dynamothennal metamorphism of argillaceous sedimentary rocks like clays and shales.


These indicate the final and stable stage in the metamorphism of shales through the intervening stages of slates and phyllites.



       A       gneiss          is  a  megascopically  crystalline  foliated  metamophorphic  rock           characterised  by segregation  of       constituent minerals  into        layers  or    bands  of           contrasting  colour,  texture  and composition.            

       A       typical        gneiss   will  show          bands   of  micaceous     minerals          alternating with   bands          of equidimensional minerals like felspars, quartz and garnet etc.



     Gneisses are generally rich in the minerals of parent rocks that are simply recrystallised during the process of metamorphism.

     Felspar and quartz are more common in gneisses than in schists.


Dark minerals of pyroxene and amphibole groups are also common, as are the typical metamorphic minerals like staurolite, sillimanite, gamet, kyanite and epidote etc.


Texture and Structure


     Gneisses show a variety of textures and structures, the most common being coarsely crystalline texture and the gneissose structure.


      Augen-gneisses show a typical cataclastic structure in which the hard minerals are


flattened and elongated.



Important types are:


Orthogneiss formed as a result of metamorphism of granites and other igneous rocks.

       Paragneiss   these   are   formed   from   the   metamorphism   of    sedimentary  rocks  like sandstones;

       Banded gneiss typical gneiss in which the tabular and flaky minerals are segregated in very conspicuous pands of alternating dark and light colours.


     Gneisses of all varieties are generally the result of advanced stages of metamorphism of a variety of parent rocks such as sandstones, conglomerates, granites and rhyolites etc.


      There  is  difference  of  opinion  on  the  original  of  the  granitic  gneisses;  their


mineralogical composition is close to granites but in structure they appear more metamorphic.




Compact, dense and massive varieties of gneisses find applications as road stones and in some cases as building stones.




       Quartzites are granular metamorphic rocks composed chiefly of inter sutured grains of quartz.


       The name Orthoquartzite is used for a sedimentary rock of similar composition


but having a different (sedimentary) origin, in which quartz grains are cemented together by siliceous cement.




Besides quartz, the rock generally contains subordinate amounts of micas, felspars, garnets and some amphiboles which result from the recrystallisation of some impurities of the original sandstone during the process of metamorphism.




Metamorphic quartzites result from the recrystallisation of rather pure sandstones under the influence of contact and dynamic metamorphism.


     The rock is generally very hard, strong, dense and uniformly grained.


     It finds extensive use in building and road construction.






               Marble is essentially a granular metamorphic rock composed chiefly of recrystallised limestone


(made of mineral calcite).


     It is characterized by a granulose texture but the grain size shows considerable variation in different varieties;


It varies from finely sachhroidal to highly coarse grained. Marbles often show a banded structure also; coarse varieties may exhibit a variety of structures.


   Small    amounts  of many  other          granular  minerals  like  olivine,  serpentine, garnet         and   some  amphiboles  are    also  present  in  many  varieties,  which  are derived from the impurities present in the original limestone during the process of metamorphic recrystallisation.




      Various types of marble are distinguished on the basis of their colour, composition and structure.


White marble, pink marble and black marble are known on the basis of their colours, which is


basically due to fine dispersion of some impurity.


       Dolomitic marble is a variety distinguished on the basis of composition; it may


show slightly schistose structure.




Marble is formed from contact metamorphism of carbonate group of sedimentary rocks: pure white marble results from pure limestone; coloured marbles from those limestones that have some impurities and dolomitic marbles from magnesian limestones.




     Marble is commonly used in the construction of palatial and monumental buildings in the form of blocks, slabs, arches and in the crushed form as chips for flooring.


Because of its restricted occurrence and transport costs, it is mostly used as ornamental stone in costly construction.

Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail
Civil : Engineering Geology : Petrology : Important Metamorphic Rocks |

Privacy Policy, Terms and Conditions, DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.