Chapter: Java The Complete Reference - The Java Language - Multithreaded Programming

| Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail |

Thread Priorities - Java

Thread priorities are used by the thread scheduler to decide when each thread should be allowed to run.

Thread Priorities

 

Thread priorities are used by the thread scheduler to decide when each thread should be allowed to run. In theory, over a given period of time, higher-priority threads get more CPU time than lower-priority threads. In practice, the amount of CPU time that a thread gets often depends on several factors besides its priority. (For example, how an operating system implements multitasking can affect the relative availability of CPU time.) A higher-priority thread can also preempt a lower-priority one. For instance, when a lower-priority thread is running and a higher-priority thread resumes (from sleeping or waiting on I/O, for example), it will preempt the lower-priority thread.

 

In theory, threads of equal priority should get equal access to the CPU. But you need to be careful. Remember, Java is designed to work in a wide range of environments. Some of those environments implement multitasking fundamentally differently than others. For safety, threads that share the same priority should yield control once in a while. This ensures that all threads have a chance to run under a nonpreemptive operating system. In practice, even in nonpreemptive environments, most threads still get a chance to run, because most threads inevitably encounter some blocking situation, such as waiting for I/O. When this happens, the blocked thread is suspended and other threads can run. But, if you want smooth multithreaded execution, you are better off not relying on this. Also, some types of tasks are CPU-intensive. Such threads dominate the CPU. For these types of threads, you want to yield control occasionally so that other threads can run.

 

To set a thread’s priority, use the setPriority( ) method, which is a member of Thread. This is its general form:

 

final void setPriority(int level)

 

Here, level specifies the new priority setting for the calling thread. The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and 10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is currently 5. These priorities are defined as static final variables within Thread.

 

You can obtain the current priority setting by calling the getPriority( ) method of Thread, shown here:

 

final int getPriority( )

 

Implementations of Java may have radically different behavior when it comes to scheduling. Most of the inconsistencies arise when you have threads that are relying on preemptive behavior, instead of cooperatively giving up CPU time. The safest way to obtain predictable, cross-platform behavior with Java is to use threads that voluntarily give up control of the CPU.


Study Material, Lecturing Notes, Assignment, Reference, Wiki description explanation, brief detail


Copyright © 2018-2020 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.